
Chapter 7

PULSATIONS, WAVES, AND DISCONTINUITIES IN

STELLAR WINDS

Wave after wave

Will ow with the tide

And bury the world as it does

Tide after tide

Will ow and recede

Leaving life to go on

As it was.

Neil Peart, Natural Science

Hot luminous stars (spectral types O, B, Wolf-Rayet) are observed to have
strong stellar winds which exhibit variability on time scales ranging from hours to
years. Many classes of these stars are also seen, via photospheric line-pro�le or
photometric variability, to pulsate radially or nonradially. It has been suspected for
some time that these oscillations can induce periodic modulations in the surround-
ing stellar wind and produce observational signatures in, e.g., ultraviolet P Cygni
line pro�les. This Chapter outlines a dynamical foundation for understanding the
propagation of stellar pulsations into an accelerating wind, and presents initial ob-
servational predictions and constraints for various types of stars.

Section 7.1 contains an overview of the theory of nonradial pulsations (NRPs)
of stars, with a description of how the discrete spectrum of small-amplitude oscilla-
tion modes (\standing waves") may be observable from the photosphere. Section 7.2
presents a parallel derivation of linear wave theory, with emphasis on the continuous
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spectrum of possible oscillations (\traveling waves") in the photosphere and acceler-
ating wind. This work represents a preliminary attempt to bridge the gap between
interior pulsations and propagating wind structure. Finally, Section 7.3 examines
the nonlinear steepening of �nite-amplitude waves and the resulting discontinuities
and \kinks" that may develop in stellar winds.

7.1 Global Stellar Pulsation

There exist several classes of early-type stars which are inferred to pulsate
strongly enough to be detected either photometrically or via line pro�le variations.
The � Cep variables (spectral types � B0 to B3) and the \slowly pulsating B
stars" (SPBs) or 53 Per variables (spectral types � B3 to B9) have recently been
explained in terms of the standard Cepheid opacity instability mechanism (Dziem-
bowski 1994), which leads to strong spontaneous pulsation. Many classical Be stars
have been observed to pulsate, and Kambe et al. (1993) has found a correlation
between circumstellar emission episodes and increased NRP amplitudes. O and B
supergiants exhibit complex variability on many time scales, and it is di�cult to
isolate clear signatures of pulsation, rotational modulation, or intrinsic wind activ-
ity (Fullerton 1990; Kaper 1993; Fullerton, Gies, & Bolton 1996). Let us begin to
disentangle these e�ects by examining the theory of NRP in stellar interiors, and
hopefully the mass motions of the underlying star can act as a \seed" for photo-
spheric and wind variability.

7.1.1 Linearized Hydrodynamic Equations

For the equilibrium state, let us assume a spherical non-rotating star, with
density �o, pressure Po, and temperature To functions of radius only. Also, let us
take the equilibrium uid velocity vo to be identically zero everywhere inside the
star. Following Cox (1980) and Unno et al. (1979), we can de�ne the Lagrangian
displacement vector

� � �r = r(t)� ro = (�r)êr + (r ��)ê� + (r sin � ��)ê� ; (7:1)

as the instantaneous spatial departure from equilibrium. Let us denote equilibrium
quantities as fo, their Eulerian (�xed in space) variations as f 0, and their Lagrangian
(moving with the uid) variations as �f . To �rst order accuracy, the Lagrangian
and Eulerian perturbations in velocity are equivalent, and

v0 = �v = v(t)� vo = v(t) =
d�

dt
=

@�

@t
: (7:2)
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For other uid quantities, however, the Lagrangian and Eulerian variations are not
equivalent. To �rst order, for a scalar quantity f ,

�f = f 0 + � � rfo : (7:3)

The linearly perturbed equations of hydrodynamics can be written as follows.
(See Section 7.2 for a more in-depth explanation of the linearization of the uid
equations.) In Eulerian form, the linearized mass continuity equation (noting that
v0 = �v = v) is

@�0

@t
+r � (�ov) = 0 : (7:4)

However, using equations (7.2) and (7.3) above, integrating with respect to time,
and expressing the result in Lagrangian form, we obtain the more useful form

��+ �or � � = 0 : (7:5)

The vector momentum equation is given in Eulerian form as

@v

@t
=

�0

�2o
rPo � 1

�o
rP 0 + g0 ; (7:6)

and in Lagrangian form as

d2�

dt2
= ��

 rP
�

!
+ �g ; (7:7)

where g is the general external acceleration (often assumed due to gravity only).
Both forms of the momentum equation will be useful later.

Because we will eventually be concerned with only adiabatic (isentropic) vari-
ations, the equation of energy conservation can be solved by two particularly simple
solutions which express, e.g., the pressure and temperature perturbations in terms
of the density perturbation. De�ning the adiabatic exponents,

�1 �
 
d ln P

d ln �

!
ad

; �3 � 1 �
 
d ln T

d ln �

!
ad

; (7:8)

�2 � 1

�2
�
 
d ln T

d ln P

!
ad

=
�3 � 1

�1
= rad ; (7:9)

the adiabatic energy relations can be expressed in terms of the thermodynamic
identities,

�P

Po
= �1

��

�o
;

�T

To
= (�3 � 1)

��

�o
; (7:10)
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where the adiabatic exponents �1 and �3 are assumed unperturbed. Isothermal
variations can be modeled by setting �1 = �2 = �3 = 1, but this is not applicable in
the stellar interior (see Section 7.2 for the di�erences between an isothermal mean

state and isothermal variations).

Finally, the Eulerian momentum equation can be re-written in terms of a
smaller number of perturbed variables (which will be useful when �nding solutions).
Cox (1980) derives the following form, using equations (7.5) and (7.10):

d2�

dt2
= �r�+A

�1Po
�o

(r � �) ; (7:11)

where

� � P 0

�o
+  0 ; A � r�o

�o
� rPo
�1Po

; (7:12)

and  0 is the perturbed gravitational potential (g = �r ). Cox mentions that the
above momentum equation is true for a spherical equilibrium condition, but it is
also valid for any equilibrium con�guration which obeys

(� � r�o)rPo = (� � rPo)r�o : (7:13)

In some cases of rotating barotropic stars, where g is derivable from a potential and
the pressure and density surfaces coincide, this relation can hold as well.

The vector A, sometimes called the \Schwarzschild discriminant," has only a
radial component Arêr for a spherical equilibrium model. This variable represents a
convective stability criterion, because the e�ective buoyant force (per unit volume)
of a small density parcel in a radially strati�ed uid is

fB = �g��(r) = ��ogAr�r ; (7:14)

where �� is the di�erence between the parcel density and the density of its sur-
roundings. Thus, if A > 0, the uid is convectively unstable, and if A < 0, the
uid is convectively stable, and oscillates with the Brunt-V�ais�al�a frequency !BV
(see Section 7.2.5), where

!2BV = �Arg : (7:15)

7.1.2 Simple Oscillatory Solutions

If we make the standard assumption that all perturbation variables vary in
time only sinusoidally, as ei!t, the three components of the momentum equation can
be expressed as

!2�r =
@�

@r
+Ar

�1Po
�o

 
��

�o

!
(7.16)
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!2�� =
1

r

@�

@�
(7.17)

!2�� =
1

r sin �

@�

@�
: (7.18)

Using the expressions for �� and ��, the divergence of � can be easily represented as

r � � =
1

r2
@

@r

�
r2�r

�
� 1

!2r2
L2� ; (7:19)

where the operator L2 is de�ned by Cox (1980) to be

L2 � � 1

sin �

@

@�

 
sin �

@

@�

!
� 1

sin2 �

@2

@�2
: (7:20)

This operator is a familiar one: its eigenfunctions are the spherical harmonics Y`m,
and its eigenvalue equation is

L2Y`m(�; �) = `(` + 1)Y`m(�; �) ; (7:21)

where ` = 0; 1; 2; : : : ; m = �`;�` + 1; : : : ; ` � 1; `. The azimuthal mode number,
m, denotes the number of pulsational minima or maxima around a chosen equator,
while the meridional degree, `, describes the latitudinal variation of the pulsational
amplitude. Speci�cally, there are (`�jmj) nodes between the north and south poles
of a star, and the poles are always nodes. We will assume that all perturbation
variables can be separated into a product of a radial eigenfunction and a spherical
harmonic function. The frequency ! thus becomes an eigenvalue of the problem,
with each solution for ! corresponding to a solution for the radial eigenfunction.

In general, there are two classes of oscillatory solutions to the linearly per-
turbed momentum equation. These can be seen by examining the r-component of
the curl of the momentum equation (i.e., the \vorticity" equation)

!2 (r� �)r = 0 (7:22)

(the g0 term vanished because it can be written as a gradient of a scalar potential).
Thus, if !2 = 0, we can solve for the so-called \toroidal"modes, and if (r� �)r = 0,
we can solve for the \spheroidal" modes. Both types of modes, taken together,
make up the complete set of solutions to the momentum equation. For spherical,
non-rotating stars, the toroidal modes are obviously non-oscillatory, but in rotating
stars they have non-vanishing frequencies (see Section 7.1.5, below). For spheroidal
modes,

(r� �)r =
@

@�
(r sin � ��)� @

@�
(r��) = 0 ; (7:23)
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and this will provide a constraint on the angular variation of �� and ��. The La-
grangian displacement � can be separated into \vertical" (radial) and \horizontal"
(tangential) components, each separable into radial and spherical harmonic eigen-
functions:

� = �rêr + �hêh ; (7:24)

where

�r(r; �; �) =
u`(r)

r2
Y`m(�; �) (7.25)

�h(r; �; �) =
v`(r)

r
Y`m(�; �) ; (7.26)

and the radial eigenfunctions u` and v` are also dependent on the eigenvalue !. In
order to separate �h into its horizontal components in the � and � directions, we
note that � is the sum of a gradient of a scalar (�) and a purely radial vector. In
this case, �� and �� are given simply by angular derivatives of �h, and Cox gives

�� =
@�h
@�

; �� =
1

sin �

@�h
@�

; (7:27)

and the tangential (non-unit) direction vector is given by

êh =

 
1

Y`m

@Y`m
@�

!
ê� +

 
1

Y`m sin �

@Y`m
@�

!
ê� : (7:28)

Note that �� and �� uniquely satisfy the spheroidal mode constraint given above in
equation (7.23).

In addition, we can also now write

r � � =
1

r2
@

@r

�
r2�r

�
� `(` + 1)

r
�h ; (7:29)

and comparison with equation (7.19) provides the useful relation

�h =
�

!2r
; (7:30)

which will be utilized below when we attempt to constrain u`(r), v`(r), and the
pressure perturbation �P , all in terms of one (unfortunately arbitrary) surface amp-
litude.

Correspondingly, the toroidal set of solutions, with !2 = 0 and �r = 0
for non-rotating systems, are given by the alternate set of angular derivatives of a
horizontal displacement,

�� =
T`m(r)

r sin �

@Y`m
@�

(7.31)

�� = �T`m(r)
r

@Y`m
@�

; (7.32)
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but (r� �)r 6= 0 for these modes, as allowed by the vorticity equation in this case.
The radial eigenfunctions T`m ideally depend on the frequency !, but in the present
case (!2 = 0), all toroidal solutions are degenerate and uninteresting.

7.1.3 Surface Constraints

Being primarily interested only in the photospheric and wind manifestation
of nonradial pulsations (NRPs), we now focus on the surface (r = R�) boundary
condition in the solution for the radial eigenfunctions. The assumption that the
Lagrangian pressure variation �P vanishes at the surface,

�P = P 0 + �r
@Po
@r

= 0 (7:33)

(a \mechanical" boundary condition) is useful in deriving a relation between the
radial and tangential displacements. Using the equilibrium condition of hydrostatic
equilibrium (@Po=@r = ��og), we can solve equation (7.33) for

�r
Hp

=
P 0

Po
; (7:34)

where Hp is the pressure scale height, Po=�og. Thus, using equation (7.30), we can
de�ne the ratio of horizontal to vertical motions,

K � �h(R�)

�r(R�)
=

g(R�)

!2R�

 
1 +

 0

P 0=�o

!
(7.35)

� GM�

!2R3
�

; (7.36)

using Cowling's (1941) approximation, which neglects the perturbation of the grav-
itational potential  . As is often done when considering observations of the surfaces
of pulsating stars, we can de�ne a \radial velocity amplitude,"

Vp � u`(R�)

R2
�

! ; (7:37)

and, given Vp and ! (or Vp and K), together with the angular eigenvalues ` and m,
the value of the displacement vector � at the surface of the star is uniquely speci�ed.

Although the simple analysis above provides an adequate surface constraint
on the Lagrangian displacement, it does not allow for the full computation of the
pressure and density variation on the stellar surface. In the theory of stellar interiors,
it is often assumed that the pressure Po and the density �o vanish at the surface,
and this implies

�P = P 0 = 0 : (7:38)
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The quantity (�P=Po), however, should remain �nite at all radii, and the adiabatic
energy conditions (eq. [7.10]) allow the corresponding density and temperature ratios
(��=�o) and (�T=To) to be computed. Dziembowski (1971) and Cox (1980) derive
a surface relation for (�P=Po) by solving the radial component of the Lagrangian
momentum equation (7.7) for

@

@r

 
�P

Po

!
=

1

Hp

"
�P

Po
+
!2

g
�r +

1

r2
@

@r

�
r2�r

�
� `(` + 1)

r
�h � 1

g

@ 0

@r

#
: (7:39)

Under the assumptions that: (i) Hp � R� near the surface, and (ii) the quantities
(�P=Po) and (�r=R�) do not vary appreciably over the uppermost scale height Hp of
the star, the quantity in square brackets above can be set to zero because (�P=Po)
must remain �nite. This quantity can then be used to solve for (�P=Po). This can
be combined with the surface boundary condition for the perturbed gravitational
potential { where  0 and g are assumed continuous across the perturbed stellar
surface { to obtain the �nal surface relation

�P

Po
=
�
`(` + 1)K � 4 � 1

K

�
�r
R�

+ [`(` + 1)K � (` + 1)]
 0

gR�

: (7:40)

In the Cowling (1941) approximation, only the �rst term in square brackets, propor-
tional to (�r=R�), remains, and it can be clearly seen that the Lagrangian pressure
variations can either be in phase or 180� out of phase with the perturbation dis-
placements themselves, depending on the values of ` and K.

Buta & Smith (1979) derive in detail the light variations from a linear and
adiabatic nonradial pulsator. Note that, for a black body, the frequency-integrated
intensity variation from the star can be given by

�I

Io
= 4

�T

To
: (7:41)

They �nd three competing factors which produce variability: (i) the purely ther-
modynamic change (�T=To) derivable from equation (7.40), (ii) a \surface normal"
(limb darkening) e�ect due to the changing direction of the local normal to points
on the star, and (iii) a \surface area" e�ect due to the changing projected area of
surface elements. More sophisticated treatments have included non-adiabatic e�ects
(see, e.g., Stamford & Watson 1981), rapid rotation (Lee & Saio 1990; Aerts 1993;
Townsend 1996), and extended atmospheres (Gouttebroze & Toutain 1994). For
stellar wind dynamics, however, we need to derive the light (i.e., incident ux) vari-
ations for an \observer" at a �nite distance from the star { not an in�nite distance
as is often assumed in the works cited above.
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7.1.4 Discrete Frequency Eigenvalues

Because stars are bound systems with the majority of their constituent gas
within a �nite volume, only a discrete set of eigenfrequencies ! arises. This is
analogous to simpler physical systems, such as a string �xed at both ends exhibiting
a discrete set of vibrational overtone frequencies. Clement (1994), however, discusses
the case of local instabilities inside stars (e.g., in convective zones) which excite a
continuous spectrum of frequencies. These arise because no �rm \boundaries" exist
to limit the solutions in these regions. Here we will examine stars that are globally

stable, and have only discrete eigenfrequencies. For realistic stellar models, these
modes separate into several natural groupings, and it will be useful to analyze a
simple model of a stellar interior in order to classify and understand these di�erent
solutions.

The classical illustrative model in stellar pulsation theory is the \homoge-
neous compressible" sphere, which has a constant equilibrium density throughout
its volume, but allows �rst-order density uctuations to exist. This model is equiv-
alent to a so-called polytrope of index np = 0; a polytrope is an idealized stellar
con�guration with a quasi-adiabatic equation of state, P / �1+(1=np). For np = 0, of
course, this implies that the zero-order density is completely insensitive to changes
in pressure, and the equation of hydrostatic equilibrium can be integrated in this
case to obtain

�(r) = �o ; P (r) = 2
3
�G�2o(R

2
� � r2) : (7:42)

Although unrealistic, the discrete eigenfrequencies which arise in this model have
exact counterparts in more centrally-condensed (and realistic) uids. Pekeris (1938)
and Ledoux & Walraven (1958) derived a second-order di�erential equation for the
parameter � � r � � = ���=�o, using Cowling's (1941) approximation ( 0 = 0) and
equations (7.10), (7.16), and (7.19). This equation for � becomes decoupled from
the equation of motion (for �r), and can be expressed, de�ning x � r=R�, as

�
1� x2

� @2�
@x2

+

 
2� 6x2

x

!
@�

@x
+ f(x; `;K;�1)� = 0 ; (7:43)

where

f(x; `;K;�1) � 2

�1

�
1

K
+ 4� `(` + 1)K

�
� `(` + 1)

 
1� x2

x2

!
� 6 : (7:44)

Note that the stellar surface (x = 1) is a regular singular point of this equation, and
a power series solution of the form

�n` = x`
nX
i=0

C2i x
2i (7:45)
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provides a recursion relation for the coe�cients C2i when substituted back into
equation (7.43). In order to have �nite solutions in the domain 0 � x � 1, the
series must terminate at a �nite n, and this constraint (setting the numerator in the
recursion relation to zero for a given n) provides the discrete spectrum of solutions
which satisfy the equation

1

K
� `(` + 1)K = �1 [n(2n + 2`+ 5) + 2` + 3]� 4 � 2Dn` ; (7:46)

where n = 0; 1; 2; : : : is the radial order of the solution. In most models, the radial
eigenfunctions u`(r) and v`(r) exhibit n nodes or roots between the center and
surface. Note that the quantity 1=K is a dimensionless squared frequency, which we
can denote as !̂2, and the above equation is a quadratic which can be solved for

!̂2 = Dn` �
q
D2

n` + `(` + 1) : (7:47)

The positive roots are denoted p-modes, or pressure modes, and the negative roots
(which in general models do not always result in !̂2 < 0, as they do above) are
denoted g-modes, or gravity modes. The physical meaning behind these labels will
be discussed below. Note that these solutions are degenerate for the 2`+1 possible
values of the azimuthal parameterm, but this degeneracy will be lifted when rotation
is introduced.

One additional set of discrete modes is possible, and these correspond to the
purely solenoidal (zero divergence) displacements of a homogeneous incompressible

uid sphere. In these modes, �P = �� = 0, and thus � = 0. Chandrasekhar (1964)
derived the associated eigenfrequencies for the homogeneous compressible model,
and

!̂2 =
2`(` � 1)

2` + 1
: (7:48)

These frequencies, originally identi�ed in the incompressible case by Kelvin, are
called f -modes, or fundamental modes. There is no oscillation for ` = 0 or ` = 1,
and there is only one radial order, n = 0, with frequencies usually between those
for the p-mode and g-mode n = 0 orders. Kelvin's incompressible f -modes have the
unique property of possessing analytic solutions for the radial eigenfunctions:

� / r
h
r`Y`m(�; �)

i
; hence, u`(r) / `r`+1 ; v`(r) / r` : (7:49)

For general, centrally-condensed stellar models, the f -modes need not have zero
divergence (i.e., constant volume), and in numerical computations the p, g, and
f -modes all appear together in the solutions.

In general, the di�erent classes of discrete modes can be described for the
complete set of spheroidal (p, g, f) and toroidal solutions, as follows:
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1. f-modes: The unique \pseudo-Kelvin" fundamental mode is characterized
by the simplest radial eigenfunctions �r(r) and �h(r), usually with the fewest
possible number of extrema. The f -mode frequency occurs at the unique
value when the Brunt-V�ais�al�a frequency !BV equals the horizontal acoustic,
or \Lamb" frequency S`,

S2
` �

`(` + 1)

r2
�1Po
�o

= k2Ha
2 ; (7:50)

at the same point in the stellar interior. Because !�1BV and S�1` are the char-
acteristic times a wave takes to move radially and horizontally (respectively)
one oscillation wavelength, f -modes occur when these motions are the most
comparable to each other.

2. p-modes: Because their motion is primarily radial, and only weakly hori-
zontal (K �< 1), the strong Eulerian variations in pressure and density create
longitudinal acoustic waves, with pressure as the dominant restoring force.
The p-mode frequencies are generally higher than those for f -modes, and !̂2

grows without bound for large n or `. For ` = 0, the pn modes correspond
to the purely radial oscillations exhibited by such stars as Cepheid and Mira
type variables.

3. g-modes: These oscillations are primarily horizontal (K �> 1), and show only
small Eulerian variations in pressure and density. The dominant restoring force
in this case is gravity, and these oscillations can be likened to the \bobbing"
of an object oating in water exhibiting transverse wave motion. The g-mode
frequencies are generally lower than those for f -modes, and !̂2 ! 0 for a
given ` as n!1. In many stellar models, there exist both positive (g+) and
negative (g�) modes, the former corresponding to oscillations and the latter
corresponding to convective instability, with growth rate �!̂2.

4. r-modes: Also called \t" (toroidal) modes, these oscillations were described
in detail by Papaloizou & Pringle (1978), and appear only for rotating stars.
The motions are almost exclusively horizontal, and the inertial centrifugal
and Coriolis forces are the dominant restoring forces. In this manner they
are comparable to the Rossby waves which provide zonal motions in planetary
atmospheres and oceans.

Figure 7.1 illustrates the discrete spheroidal (p, g, f) oscillation modes for an ideal-
ized nonrotating star. Solid lines link modes of the same radial order n, and the gray
hatched regions represent waves which can propagate in the photosphere (see Section
7.2.5 below). The model star is a B supergiant, with M� = 20M� and R� = 22R�,
but the stellar interior has been scaled in radius from a zero-age main sequence
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(ZAMS) con�guration computed by the code of Hansen & Kawaler (1994). This,
together with the simple Cowling-approximation pulsation code used to compute
the eigenperiods (also from Hansen & Kawaler 1994), implies that these periods
are only useful in an illustrative sense and should not be assumed quantitatively
accurate.

Smeyers (1984) reviews several asymptotic treatments of adiabatic spheroidal
modes, and presents the following useful approximations for high-order p- and g-
modes. For the p-mode displaying n� 1 nodes in the radial displacement,

!p � �

2

�
2n + `+ np +

1

2

�24Z R�

0

drq
�1Po=�o

3
5�1 ; (7:51)

where np is a characteristic polytropic index of the photosphere. For high-order
g-modes,

!g � 2

�

�
2n + `+ np +

5

2

��1q
`(` + 1)

Z R�

0
j!BV jdr

r
: (7:52)

These approximate formulae have been derived by assuming a wavelike behavior
of the radially dependent functions u`(r) and v`(r), and the above expressions are
extensions of local wave dispersion relations to the global modes of the star.

Finally, we can note that the observationally-derived \period-mean density"
relation,

Q = �
q
��=��� (7:53)

can be understood in terms of the dimensionless frequency !̂. The period of the
oscillations is � = 2�=!, the mean density of a spherical star is given by

�� =
M�

V�
=

3M�

4�R3
�

; (7:54)

and ��� is the mean density of the sun. Thus, the \pulsation constant" Q can be
written

Q =
2�

!̂

vuut R3
�

GM�

� 0:1159 days

!̂
: (7:55)

If a class of stars, over a wide range of spectral types (and radii and masses), all
exhibit nearly the same oscillatory modes, then !̂, and thus Q, will remain nearly
constant.

7.1.5 The E�ects of Rotation

Let us now consider a uniformly rotating star. By writing the equations
of hydrodynamics in the corotating frame, we can preserve the condition of zero
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Figure 7.1: Discrete NRP eigenperiods (�lled circles) for an idealized B supergiant
model. For ` = 0, only the short-period p-modes exist, and for ` =
1, only the p and g-modes are present. The f -modes, with periods
between the two, begin at ` = 2. The gray hatched regions denote
periods and horizontal wavenumbers (k � `=R) which can propagate
radially in an isothermal photosphere.
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equilibrium velocity (vo = 0). The equation of mass continuity is unchanged, while
the momentum conservation equation contains two new terms (e.g., on the left side
of eq. [7.6]), representing the non-inertial centrifugal force,

� 1
2
rj
 � �j2 (7:56)

and the Coriolis force,
2
 � v ; (7:57)

where 
 = 
êz is the angular velocity of rotation. Most analyses of the e�ects of
rotation on NRPs assume su�ciently slow rotation so that the O(
2) centrifugal
term can be neglected, and that all rotational e�ects come from the O(
) Coriolis
term. Although we will often apply this approximation below, it is by no means
universally applicable, even for modes with (
=!) < 1. Fortunately, however, the
primary e�ect of the centrifugal force is to a�ect the equilibrium state by means
of oblateness and gravity darkening, and it has only negligible impact on small
perturbations (Unno et al. 1989). The complete (centrifugal + Coriolis) problem is
quite complicated, and the use of spherical harmonic eigenfunctions and distinct p,
g, f , and r modes becomes less exact for rapidly rotating stars (Lee & Saio 1990;
Clement 1994; Townsend 1996).

Using the above slow-rotation approximation, then, the oscillatory equation
of motion can be written as

!2� � 2i!(
 � �) = r�+A
�1Po
�o

 
��

�o

!
; (7:58)

and, to �rst order (and for a star still assumed to be spherical), we can make use
of the same separation of variables used in Section 7.1.2 to �nd solutions. Note,
however, that the vorticity equation (eq. [7.22]) is now

!2 (r� �)r =
2i!


r sin �

"
@

@�

�
�r sin

2 � + �� sin � cos �
�
+ cos �

@��
@�

#
; (7:59)

and it is no longer a simple matter to separate the spherical and toroidal type
solutions from one another.

Aerts (1993) �nds that the standard spheroidal modes (derived in Sections
7.1.2 and 7.1.4) are rotationally perturbed by the addition of 
-dependent spheroidal
terms with the same ` and m as the non-rotating mode, and two toroidal modes with
the same m, but ` � 1. These �rst order perturbations are proportional to (
=!).
The toroidal terms can be derived from the rotational vorticity equation (7.59), and

written in terms of the zero order (non-rotating) eigenfunctions u(0)` and v(0)` . Lee &
Saio (1990) and Townsend (1996) discuss the procedure of constructing a new set
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of basis eigenfunctions for an arbitrarily rotating system, and in general, an in�nite
sum of toroidal and spheroidal modes proportional to Y`m (for jmj � ` < 1) is
required to express each rotating mode. These higher order terms have a stronger
impact on the mainly horizontal g and r modes, and little impact on the p-modes.

Along with the rotational perturbation in the eigenfunctions, the eigenval-
ues ! are similarly a�ected. Ledoux (1951) �rst derived the general rotational
\splitting" of the 2` + 1 frequency degeneracy for di�erent values of m. Expanding
equation (7.58) in terms of a non-rotating solution �(0) and a small rotational per-
turbation �(1), Ledoux noted that the right-hand side of equation (7.58) vanishes
when the equation is dotted into the complex conjugate ��(0) and integrated over
the entire mass of the star, and the two terms that remain are

2!(0)!(1)
Z R�

0

�
�(0) � ��(0)

�
4�r2dr � 2i!(0)

Z R�

0

h�

 � �(0)

�
� ��(0)

i
4�r2dr = 0 :

(7:60)
Using the terminology introduced in Section 7.1.2, we can solve for the rotationally
perturbed part of the frequency,

!(1) = m


RR�

0 [2u`(r)v`(r)=r + v2` (r)] �(r)drRR�

0 [2u2` (r)=r
2 + `(` + 1)v2` (r)] �(r)dr

� m
Cn` : (7:61)

For the homogeneous compressible model of Section 7.1.4,

Cn` � K(2 +K)

1 + `(` + 1)K2
; (7:62)

but Ledoux �nds that for more realistic polytropic indices, and speci�cally for low-
order f and g-modes, Cn` is typically of the order 0.1{0.2. Papaloizou & Pringle
(1978) derive, for r-modes,

Cn` � 2

`(` + 1)
; (7:63)

and in this case we have the unusual situation where !(1) > 0, but !(0) = 0.

Finally, we can now determine the overall e�ect that (su�ciently slow) ro-
tation will have on a given intrinsic NRP frequency !(0). Because the spherical
harmonics are de�ned in the rotating frame of the star, the observed inertial-frame
frequency is found by making the transformation

� = �inertial � 
t ; (7:64)

so the overall dependence of any perturbed quantity will be

f / exp(im�+ i!t)

/ exp
h
im(�inertial � 
t) + i(!(0) + !(1))t

i
; (7.65)
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and, e�ectively,
!observed = !(0) �m
(1� Cn`) : (7:66)

Thus, the convention is to call m < 0 modes \prograde" and m > 0 modes \ret-
rograde" because of their e�ect on the apparent frequency of features propagating
across the stellar disk. In general, it is not a trivial matter to observationally iden-
tify rotationally-split pulsation modes of this kind. Although some well-sampled
objects, such as the Sun and some white dwarf stars, exhibit the full 2` + 1 split-
ting for many neighboring (n, `) modes, early-type main sequence and supergiant
stars usually only show one or two NRP periods at one epoch. Thus, the variables
!observed and 
 are known reasonably well (the latter from Veq sin i), but !(0), m,
and Cn` are all virtually unconstrained. Even if an accurate theoretical NRP mode
spectrum exists, eq. (7.66) allows many combinations of, e.g., ! and m to satisfy
given observational values of !observed and 
.

7.2 Wave Propagation in Winds

The discrete spectrum of NRP \standing waves" derived above depends on
the stellar interior being a bounded system. However, we are interested in the tran-
sition between the stellar interior and the \exterior" { i.e., the photosphere and
accelerating wind. In order to ascertain whether this surrounding medium is sig-
ni�cantly a�ected by underlying global oscillations we need to examine the physics
of wave dispersion in a strati�ed and radiatively-accelerated gas. In this Section
the linearized (�rst order perturbation) equations of mass, momentum, and energy
conservation are described, and solved for wavelike variations of the density, pres-
sure, and velocity in various circumstances. Although most low-order NRP modes
are evanescent, or exponentially damped in the photosphere, we �nd that the pres-
ence of an accelerating stellar wind allows these modes to propagate radially in the
transsonic and supersonic regions of the wind.

7.2.1 Basic Hydrodynamic Equations

Our goal is to derive linear analytic relations governing the propagation of
modi�ed acoustic waves in an accelerating stellar wind. For simplicity we will treat
only the two-dimensional problem of the equatorial plane (� = �=2) around a star,
with radius r and azimuthal angle � being the two spatial independent variables.
Thus, we assume no ow into or out of this plane, and that all latitudinal gradients
vanish there.

Let us de�ne the velocity components vr � w, v� � v, and v� � u. This
choice is motivated by the correspondence we will draw below between spherical
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polar variables r, �, � and Cartesian variables z, y, x, respectively. Thus, we can
write the equation of mass continuity,

@�
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+ w

@�

@r
+ �

@w

@r
+
2�w

r
+
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r

@�

@�
+
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r
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@�
= 0 : (7:67)

The r and � components of the equation of momentum conservation are
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where g and grad represent the gravitational and radiative acceleration terms. Let
us assume an ideal gas equation of state,

P =
�kBT

�m
= ( � 1)�e ; (7:70)

where kB is Boltzmann's constant, �m is the mean molecular mass of gas particles,
 is the ratio of speci�c heats cP=cV (usually 5/3 for a monatomic gas), and e is the
speci�c internal energy of the gas.

This system of equations is closed by an equation of internal energy conser-
vation, given by
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!
D�

Dt
= H(T ) ; (7:71)

where the Lagrangian total derivative is de�ned here as

D

Dt
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+ v � r : (7:72)

The function H is a temperature-dependent rate of net heating or cooling, and
is most generally a function of �, P , and T . For simplicity, however, we restrict
ourselves to only examine its behavior with temperature (see Mihalas & Mihalas
1984). Thus, the energy conservation equation is
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= �H : (7:73)

7.2.2 Linearization

Let us assume the dynamical variables in the uid equations can be separated
into an equilibrium state (zero order) and a small-amplitude perturbation (�rst
order):

u � u0(r) + u1(r; �; t) (7.74)
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w � w0(r) + w1(r; �; t) (7.75)

� � �0(r) + �1(r; �; t) (7.76)

P � P0(r) + P1(r; �; t) (7.77)

T � T0(r) + T1(r; �; t) : (7.78)

The gravitational acceleration g is assumed to be a zero-order function of r only,
but the radiative acceleration grad is more complicated. In the most general radia-
tion hydrodynamical formulation (Mihalas & Mihalas 1984), grad and H depend on
angle-moments of the radiation �eld speci�c intensity I�, which is speci�ed by the
equation of radiative transfer. However, here we assume the circumstellar radiation
�eld is dominated by the (known) \core" stellar intensity, that the radiative accel-
eration is given by the standard analytic Sobolev form, and that the wavelengths
of perturbations are larger than the Sobolev length LSob (Owocki & Rybicki 1984,
hereafter OR-I). Thus, grad depends on r, the radial velocity w, and the density �
(as well as the velocity gradient @w=@r, but this is formally a function of w and r).
Expanding to �rst order in a Taylor series,

grad � grad,0 + grad,1

= grad(w0; �0) +

8<
:(w �w0)

@grad
@w

�����
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Thus we can de�ne

grad,1 =

8<
:w1

@grad
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�����
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+ �1
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9=
; � w1F1 + �1F3 : (7:80)

Similarly, the heating/cooling rate H is expressed as the sum

H � H0 +H1 = H(T0) + T1
@H

@T

�����
T0

� H0 � C�0kBT1
�m

; (7:81)

where C is de�ned as a cooling relaxation time-constant (see OR-I, eq. [58]). The
variables C, F1, and F3 are considered to be zero-order functions of radius only, and
are not the same as the variables of the same name in Chapter 2. Note that we
leave room for a variable \F2," but defer to Section 7.2.7 to de�ne it formally.

Substituting in these expansions yields, in general, terms of zero through
third order. Let us assume that the zero-order solutions for u0, w0, �0, P0, and T0
are known functions of r, so that the zero-order terms in the uid equations can be
canceled exactly when writing any higher-order equations. The zero-order equation
of mass continuity,

w0
@�0
@r

+ �0
@w0

@r
+
2�0w0

r
= 0 ; (7:82)
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provides a constraint linking the zero-order density and radial velocity gradients.
The zero-order equations of momentum conservation reduce to

w0
@w0

@r
� u20
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which allows us to solve for the radial variation of the azimuthal velocity, u0(r) =
VrotR�=r, as well as eliminate the zero-order net radial force (g� grad,0). Similarly,
the zero-order heating rate can be eliminated via the zero-order energy equation,

H0 = w0
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� w0
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�0
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: (7:85)

Finally, we can write the �rst order uid equations, neglecting second and
third order terms because they are small when compared to those of �rst order.
Thus, taking care to use the above zero-order constraints to simplify, the continuity
equation becomes
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and the momentum equation components become
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The ideal gas equation of state can be expressed in �rst order as
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and the energy equation can be expanded to obtain

�0
@P1
@t

+ �0w0
@P1
@r

+ �0w1
@P0
@r

+
�0u0
r

@P1
@�

� P0
@�1
@t

� P0w0
@�1
@r

� P0w1
@�0
@r

� P0u0
r

@�1
@�

� P1w0
@�0
@r

+

 
P0
�0

!
�1w0

@�0
@r

+
C�20kBT1

�m
= 0 : (7:90)



188

To investigate the intrinsic behavior of �rst-order perturbations in a moving
medium, a transformation is often made to a coordinate system comoving with the
zero-order ow. In a constant-velocity medium, this simpli�es the equations of
motion greatly. In our case, however, the zero-order reference frame is accelerating,
thus noninertial, and there is no immediate bene�t gained in transforming into
the wind's frame. Bogdan et al. (1996) discuss the proper nonat metric needed
to perform this transformation for a general analysis of waves in a radiating and
accelerating medium, but this is de�nitely beyond the scope of this work.

Thus, our independent variables remain r, �, and t. The latter two variables
are \homogeneous," since the zero-order solutions vary only in the radial direction.
Let us then assume oscillatory solutions of the normal-mode form

w1

~W (r)
=

u1
~U (r)

=
�1=�0
~D(r)

=
P1=�0
~�(r)

=
T1=T0
~�(r)

= exp [i(!t+m�)] ; (7:91)

(see, e.g., Mihalas & Mihalas 1984), where the denominators are complex, radially-
dependent amplitudes of the respective perturbed variables, and the frequency !
and azimuthal mode number m are assumed real. Of course, the actual �rst-order
variables u1, w1, �1, P1, and T1 are obtained in the end by taking the real part of
any complex quantity. Although global stellar NRPs usually demand m to be an
integer, this restriction is not yet imposed. Note that, when di�erentiating �rst-order
quantities with respect to r, there will be two terms for the ~�, ~D, and ~� amplitudes,
because of the assumed dependence on the zero-order density and temperature.

Upon substitution, and dividing all terms by �0 exp[i(!t + m�)], the uid
equations become a system of �rst-order ordinary di�erential equations. For com-
pactness of notation, let us de�ne the acoustic sound speed,

a(r) �
 
P0
�0

!1=2
; (7:92)

and the density scale height in the wind,

H(r) � � �0
@�0=@r

: (7:93)

Let us further assume the sound speed a does not vary in the wind, implying an
isothermal zero-order wind. Because radiative heating and cooling dominates the
energy balance in hot-star winds, the time scale for the gas to gain or lose energy is
short when compared to the time scale of the ow. This results in the near-constancy
of T0 in the wind (see Section 7.2.4, below, and, e.g., Klein & Castor 1978; Drew
1989). However, this does not prevent �rst-order temperature perturbations from
existing.
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Under these approximations, the continuity equation thus becomes express-
ible as

i! ~D � 1
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and the momentum equations become
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The energy equation becomes (after eliminating ~� in favor of ~� and ~D, and dividing
out another factor of the zero-order density)
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The above system of coupled �rst-order ordinary di�erential equations is
solved most generally as an initial value problem, with values of the complex ampli-
tudes ~U , ~W , ~D, and ~� speci�ed at a known initial radius. A numerical scheme, such
as Runge-Kutta, then integrates this system in radius to obtain the full solution for
the �rst-order wave variations in the wind. Further, any of the radially-dependent
complex amplitudes can be written at any radius as

~Z = AZ exp(i Z) ; (7:98)

where here ~Z represents either ~U , ~W , ~D, or ~�, and its magnitude AZ and phase
 Z are real. Below, it will be convenient to express various quantities, such as the
wave phase speed, as functions of these real components of the complex amplitudes.
As in geometrical optics, the function  Z may be regarded, over a small region of
space, as an eikonal, with the linear wave vector and frequency de�ned as

k � �r Z ; ! � @ Z
@t

: (7:99)

Here, however,  Z is a function of position only, and not of time. In general,
when the properties of the medium at each point in space do not vary in time, the
frequency remains constant along the wave path. Thus we assume that a stellar
atmosphere \driven" at a certain frequency ! should induce coherent modulations
throughout the wind at that same frequency.
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7.2.3 Local Dispersion Analysis

Before exploring full global solutions to the linearized �rst-order ordinary
di�erential equations (in Section 7.2.8), it is instructive to examine the limiting
cases of various local environments that can be treated in a simpler way:

1. A homogeneous medium (constant u0, w0, �0, P0).

2. A strati�ed atmosphere (varying �0 and P0, w0 � a, constant u0).

3. A subsonic wind (w0 � a), superimposed on a strati�ed plane-parallel at-
mosphere.

4. A supersonic wind (w0 � a), with su�ciently high frequency or short wave-
length modes.

In these cases, let us assume that the local radial variation of the complex amplitudes
is given by

~Z(r) � Z exp(�ikrr) ; (7:100)

where the radial wavenumber kr, in the most general formulation, is allowed to be
complex. Note that there is a single and constant value of kr de�ned for all four
complex amplitudes; this is consistent only when the coe�cients of U , W , D, and
� in the linearized equations are constants in radius as well. For more complicated
situations, the equations demand that kr itself vary in radius, and one must also
question (and usually reject) the entire notion of a single kr for all four complex
amplitudes.

Given the above radial dependence for the �rst-order amplitudes, the equa-
tions of motion can be written in matrix form as0
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1
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; (7:101)

where the numbers 1, 2, 3, and 4 refer to the continuity, r-momentum, �-momentum,
and energy equations, respectively. These coe�cients are listed here for complete-
ness, but note that only certain limiting cases (discussed below) are completely
consistent with this localized analysis:

M1U =
im

r
(7.102)
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Of course, all coe�cients in this homogeneous system have been divided by
exp(�ikrr). In addition, the homogeneity of the system allows one of the four
amplitudes to be chosen as a free parameter. We will assume hereafter that we can
arbitrarily assign

D = � + 0i ; (7:118)

where � � 1, and D is chosen to be real to allow convenient comparison with the
other variables (which in general all lead or lag each other in complex phase). Also,
the complex temperature amplitude is given immediately by

� =
�0
P0

��D : (7:119)
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From the equation of �-momentum conservation, the pressure and horizontal veloc-
ity amplitudes are directly related by

� =

 
iw0 � !0r

m

!
U � nU ; (7:120)

where !0 � ! � krw0 + mu0=r, and is an e�ective comoving or Doppler-shifted
frequency. Note that !0 is the frequency in the locally-inertial frame de�ned by
the translations r ! (r + w0t) and r� ! (r� � u0t). From the mass and r-
momentum conservation equations, the remaining two amplitude relations are given
schematically by

W =

"
(M2U + nM2�)M1D �M1UM2D

M1UM2W � (M2U + nM2�)M1W

#
D (7:121)
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(M1WW +M1DD) : (7:122)

In the \one-dimensional" limit of m = 0, the above relations contain canceling
in�nities, and it becomes easier to express them as follows:

U = 0 ; W = �
�
M1D

M1W

�
D ; � = �(M2WW +M2DD)

M2�
: (7:123)

Finally, if the frequency ! and the azimuthal mode numberm are speci�ed ar-
bitrarily, the allowed values for the radial wavenumber kr can be determined uniquely
by considering them eigenvalues of the coe�cient matrix M. In other words, there
can exist a nontrivial solution of eq. (7.101) only if the determinant of M vanishes.
This determinant results in a fourth-order polynomial equation, and in general there
are four allowed solutions for kr. Let us examine this so-called dispersion relation

for the four localized cases listed above.

7.2.4 A Homogeneous Medium

Let us assume all zero-order quantities, u0, w0, �0, P0 are constants with
position, and that the local medium can be considered nearly Cartesian, or plane-
parallel. Thus, the radial and azimuthal variations can be recast into the form

exp(�ikrr) =) exp(�ikzz) (7.124)

exp(im�) =) exp(�ikxx) ; (7.125)
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where x (equivalent to r[� � �0]) and z (equivalent to [r � r0]) are horizontal and
vertical displacement coordinates, respectively. In these conditions, the dispersion
matrix becomes ��������������

�ikx �ikz i!0 0

0 i!0 0 �ikz
i!0 0 0 �ikx
0 0 �i!0a2 � Ca2= i!0 + C

��������������
= 0 ; (7:126)

where, of course, all sphericity, strati�cation, and radiative acceleration terms van-
ish, and !0 � ! � kzw0 � kxu0 = ! � k � v0. The algebraic dispersion relation
is

!03(!0 � iC)� !0a2(k2z + k2x)(!
0 � iC=) = 0 : (7:127)

In a purely static (u0 = w0 = 0) and adiabatic (C = 0) medium, eq. (7.127)
reduces to the pure acoustic dispersion relation,

!2 = a2(k2z + k2x) ; (7:128)

where two factors of the trivial solution ! = 0 have been eliminated. Waves propa-
gate parallel to the wave vector k = kz êz + kxêx � (k2z + k2x)

1=2êk � kêk. The phase
speed and group velocity are de�ned as
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êz +

@!

@kx
êx : (7:129)

Note that the phase speed (in the arbitrary n̂ direction) cannot be written as a
vector velocity, since, e.g., the x and z phase speeds do not vectorially add to the
phase speed in the direction of propagation êk. This same property is what prevents
the wavelength (� = 2�=k) from being written as a vector quantity. Note that the
phase speed in the direction of propagation and the magnitude of the group velocity
are the same in this present case, and both equal to �a. The relative perturbation
amplitudes can be found easily, from the individual equations in (7.101), and written
in terms of the density amplitude as

� = a2D ; U =
a2kx
!

D ; W =
a2kz
!

D ; (7:130)

or as a general velocity amplitude

V �
p
U2 +W 2 = �a � : (7:131)
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Thus, for acoustic waves, the velocity, density, pressure, and temperature all vary
in phase with one another.

If the adiabatic (C = 0) uid is now examined in amoving inertial frame (with
u0, w0 constant and nonzero), then ! is simply replaced by !0, and the nontrivial
solution to the dispersion equation is

! = u0kx + w0kz � a
q
k2x + k2z ; (7:132)

Note, however, that the trivial solution, now !0 = 0, represents a modulation which
is passively carried along with the mean uid motion. This \entropy-mode" solution
corresponds to a constant-pressure (� = 0) wave which would occur in an incom-
pressible uid (r � v = 0). This wave solution is incompatible with the arbitrary
speci�cation of the frequency ! at a given location in the wind, and we will not
pursue these solutions at present.

Although the phase speeds in the x and z directions are not equal to the x and
z components of the group velocity, the phase speed in the direction of propagation
remains equal to the magnitude of the group velocity:

vp(êk) = vg =
u0kx + w0kz � ak

k
: (7:133)

In the limit of both ju0j; jw0j � a, as happens in some regions of a supersonic wind,
the two oppositely-propagating wave solutions merge into one solution moving at
the velocity of the medium. The velocity amplitudes can be written similar to
eq. (7.130), with !0 replacing !, or in vector form, as

V =
a2k

!0
D : (7:134)

Heuristically, the uniformly moving medium e�ectively \stretches" an acous-
tic wave via the Doppler e�ect. To quantify this, assume a simple one-dimensional

z-oscillation (kx = 0), in a medium moving only in the z-direction (u0 = 0), which
has a frequency

! � aK = w0kz � akz ; (7:135)

with K de�ned as the vertical wavenumber (or inverse wavelength, 2�=�) in the
case of a stationary medium. Thus, the ratio of wavenumbers, or wavelengths, is

K

kz
=

�z
�

=
w0

a
� 1 (7:136)

which is precisely the wavelength shift due to Doppler motions.
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Finally, let us examine the e�ect of net heating or cooling (C 6= 0) on waves
in a homogeneous medium. For simplicity, consider a static medium. The nontrivial
dispersion relation can then be written as

!2 = a2k2
"
! � iC=

! � iC

#
: (7:137)

If the cooling rate is negligibly slow or absent (C � !), waves propagate acoustically,
but if the cooling rate is rapid (C � !), the phase speed approaches

v2p =
!2

k2
! a2


=

P0
�0

� a2T ; (7:138)

where aT is an e�ective isothermal sound speed (equivalent to setting  = 1 in the
de�nition of a). Thus, when the energy balance is dominated by rapid cooling, all
perturbations are quickly brought into thermal equilibrium. For intermediate values
of the cooling rate (C � !) waves will be damped by the imaginary component of
the resulting wavenumber.

As an aside, let us examine several physical mechanisms that can be respon-
sible for a net rate of heating or cooling. If the uid allows thermal conduction,

then
H(T ) = r � (KTrT ) � KTr2T ; (7:139)

where KT is the coe�cient of thermal conductivity. Thus, we can write

C = �

 


 � 1

! �
k2x + k2z

�
� Dk2 ; (7:140)

where � � KT=�0cP is the thermal di�usivity, and the speci�c heat at constant
pressure cP = kB=( � 1) �m. Mihalas & Mihalas (1984) investigate the solutions to
the modi�ed dispersion relation in this case, and �nd two classes of wave modes. One
pair of solutions are standard acoustic modes, only slightly modi�ed by conductive
damping terms,

k �
8><
>:
�(!=a)[1� i( � 1)"=2] ; "� 1

�(!=aT )[1� i( � 1)=2"2] ; "� 1 ;
(7:141)

with " � !�=a2, the relative strength of conduction. Thus, the characteristic damp-
ing (or e-folding) length L of oscillations scales as 1=Im(k), and is large in the
extreme limits " � 1 and " � 1. However, when " � 1, the real and imaginary
parts of k are comparable, and waves damp out over a small L. The second pair of
solutions are the so-called thermal waves, with

k �
8><
>:
�(!=a)(2")�1=2(1 � i) ; "� 1

�(!=aT )(2")�1=2(1� i) ; "� 1 ;
(7:142)
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which are always heavily damped (over a few wavelengths), and propagate with an
extremely slow or fast phase speed, compared to a, in the two limits " � 1 and
"� 1, respectively.

In hot-star winds, radiation can strongly damp out temperature uctuations
by providing an added \sink" for energy exchange, analogous to the transfer of wave
energy into entropy for the above heat-conducting uid. For optically thin distur-
bances (�� k, see below), the net heat input to the gas is adequately described by
Newtonian cooling, with the constant

C � 1

tRR
=

16�B�T 3
0

�0cV
; (7:143)

where tRR is a characteristic radiative relaxation time, �B is the Stefan-Boltzmann
constant, � is the opacity (in cm2=g) of the gas, and cV is the speci�c heat at
constant volume. For an optically thick disturbance (�� k), radiation and matter
are in thermal equilibrium, and energy is exchanged via a conduction-like di�usion.
The resulting wave propagation is then formally identical to the pure conduction
case above, but with

KT = Kthermal
T +Kradiation

T : (7:144)

Note, however, that KT in an ionized or radiating uid is now a function of tem-
perature, and the treatment of such nonlinear conduction is an ongoing subject of
study in radiation hydrodynamics.

For simplicity, however, we will keep C = 0 in all subsequent cases, and
either assume that �rst-order perturbations are adiabatic ( = 5=3) or isothermal
( = 1). In fact, in preliminary hydrodynamical simulations using VH-1, the strong
radiative cooling which keeps the zero-order wind nearly isothermal also drives most
perturbations to behave as if  = 1 in most of the wind. See, e.g., OR-I for further
discussion of this heating/cooling parameter in radiatively-driven winds.

7.2.5 A Strati�ed Atmosphere

The standard theoretical description of waves in a gravitationally-strati�ed,
plane-parallel medium is that of gravo-acoustic waves (Lamb 1932; Mihalas & Mi-
halas 1984). However, there is a simpler formalism that should be understood prior
to the general full gravo-acoustic analysis: the extreme limit of gravity forces being
much stronger than pressure-gradient forces.

In a medium where gravity dominates as the restoring force on perturbations,
we can neglect pressure-gradient forces, and write the dispersion matrix under the
ansatz that � = 0, i.e., all variations remain in pressure equilibrium, and thus all
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motions are adiabatic. If we also assume the mean state is at rest (u0 = w0 = 0),
and radiative forces and cooling rates are negligible (C = F1 = F3 = 0), we obtain

��������������

�ikx �ikz � 1=H i! 0

0 i! a2=H 0

i! 0 0 0

0 ( � 1)a2=H �i!a2 0

��������������
= 0 ; (7:145)

which is now e�ectively uncoupled, since the determinant is identically zero. Note
also that the assumed isothermality of the medium implies that the zero-order equa-
tion of hydrostatic equilibrium,

@P0
@z

=
a2



@�0
@z

= ��0g ; (7:146)

(which is the limit of u0 = w0 = 0 in eq. [7.83]) can be integrated to �nd

�0(z) = �0(0) exp(�z=H) ; (7:147)

and in a plane-parallel atmosphere, g and H = a2=g are constants. Thus, the
upper-left three-fourths of the above dispersion matrix (ignoring all � terms and
the energy equation) can be solved for

!2 = igkz +
g

H
: (7:148)

Also note that U = 0 is mandated by the x-momentum equation, mainly because
there are no restoring forces in the horizontal direction. Finally, if one takes �a2
times the continuity equation, and compares it term-by-term with the energy equa-
tion, one obtains a unique solution for the vertical wavenumber, kz = ig=a2. A
purely imaginary wavenumber implies no wave propagation, but rather an expon-
entially growing (unstable) or decaying (stable) oscillation in z. Substituting this
imaginary kz into the dispersion relation provides the de�nition for the speci�ed
frequency of buoyancy oscillations, called the Brunt-V�ais�al�a frequency:

!2BV � g

�0

 
1

a2
@P0
@z

� @�0
@z

!
= ( � 1)

g2

a2
; (7:149)

where the latter equality is valid only for our assumed constant-T0 equilibrium
model. This relation is also known as the Schwarzschild criterion for stability against
convection: when !2BV > 0 the medium is stably strati�ed, and when !2BV < 0 the
medium is unstable to convective overturning.
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It is clear that if both the zero-order medium and the �rst-order perturbations
are isothermal (implying  = 1 everywhere), buoyancy oscillations cannot occur, and
the medium is considered \neutrally stable." This condition can be also understood
by examining the oscillation amplitudes, which are given by

U = � = 0 ; W =
ig

!
D ; � = �D ; (7:150)

and it is clear that buoyancy oscillations depend on a nonzero density perturbation.
If the oscillations are adiabatic (in pressure equilibrium) and isothermal ( = 1, and
� = 0), clearly the density oscillation amplitude must also be zero. Note also that
for �nite amplitude oscillations, the velocity and density are 90� out of phase, and
the temperature and density are 180� out of phase.

A signi�cantly more realistic treatment of oscillations in a gravitationally
strati�ed medium takes both pressure-gradient forces and gravity into account. Let
us write the dispersion matrix for a strati�ed, but unmoving mean state (u0 = w0 =
0), still ignoring the e�ects of radiative acceleration and net cooling/heating, and
still assuming a plane-parallel geometry. In addition, assume the zero-order medium
is isothermally strati�ed, with density given by eq. (7.147). Thus,

��������������

�ikx �ikz � g=a2 i! 0

0 i! g �ikz � g=a2

i! 0 0 �ikx
0 ( � 1)g �i!a2 i!

��������������
= 0 ; (7:151)

which reduces to the (complex) dispersion relation

!4 � !2
h
a2(k2x + k2z )� igkz

i
+ g2k2x( � 1) = 0 : (7:152)

Because we are presently concerned with steady-state oscillations, we will assume a
real frequency !. Note, however, that the use of a complex frequency would allow
some transient wave-energy transport to occur in ways not previously expected
(see Wang, Ulrich, & Coroniti 1995). We will also assume that the horizontal
wavenumber kx is real, since the ambient medium is horizontally homogeneous, and
no nonlocal variations in x are expected.

However, the vertical wavenumber kz can be arbitrarily complex, because a
wave can grow or decay in amplitude as it propagates vertically in the strati�ed
medium. De�ning kz � kr + iki, the imaginary part of the dispersion relation can
be written

!2
�
gkr � 2a2kikr

�
= 0 ; (7:153)
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which solves simply for ki (when kr 6= 0)

ki =
g

2a2
=

1

2H
: (7:154)

Thus, all propagating oscillatory solutions contain a factor exp(z=2H), implying
rapid growth of wave amplitudes with height, or with decreasing ambient density.
Using this value for ki, the real part of the dispersion relation reduces to

!4 � !2
h
a2(k2x + k2r) + !2a

i
+ !2ga

2k2x = 0 ; (7:155)

where !a is the so-called \acoutstic cuto�" frequency,

!a � g

2a
=

a

2H
; (7:156)

and !g is the Brunt-V�ais�al�a frequency for an isothermal medium (eq. [7.149]). Note
that !a �> !g for physically relevant values of  (between 1 and 5=3). Solving the
real dispersion relation for the vertical wavenumber,

k2r =
(!2 � !2a)

a2
� (!2 � !2g) k

2
x

!2
; (7:157)

we �nd that, for purely vertical waves (kx = 0), kr approaches the pure acoustic
limit of (�!=a) for ! � !a, but grows smaller for �nite values of !a. When
! = !a, kr = 0, and there can be no vertical propagation. An imposed oscillation
at this frequency coherently lifts and drops the entire medium, an e�ect known as
\atmospheric resonance," �rst noted by Lamb. In numerical wind models, these
Lamb oscillations represent a persistent \ringing" of the near-static base boundary
conditions, and often hinder or prevent the formation of a steady-state solution (see
Feldmeier 1995).

Frequencies below !a make kr imaginary, implying amplitudes which vary
exponentially with height. These evanescent waves have a formally in�nite vertical
phase velocity (since we de�ne vp as a function of only the real, i.e. propagating,
part of k), implying zero group velocity (since for gravo-acoustic waves, vpvg = a2),
and thus they transport no energy vertically.

The general two-dimensional case (kx 6= 0) similarly allows three types of
solutions for kr (propagating, resonant, and evanescent), but with these regions
separated into distinct areas of (!; kx) space (see Figure 7.1). Two \propagation
boundary curves" (on which kr = 0) split up the space into three regions, bounded
by

!2pbc(kx) =
!2a + a2k2x �

q
(!2a + a2k2x)

2 � 4a2k2x!
2
g

2
: (7:158)
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These solutions for !pbc reduce to the two values f0; !ag in the limit kx = 0, and
approach the asymptotic limits f!g; akxg in the limit kx ! 1. Above the upper
branch, k2r > 0, and solutions propagate as gravity-modi�ed acoustic waves. Be-
low the lower branch, k2r > 0 as well, and waves appear more and more like the
gravitationally-dominated buoyancy waves de�ned above, and here are called inter-

nal gravity waves. Between the two propagation boundary curves, k2r < 0, and this
is an evanescent region. Note that in this region, ki 6= 1=2H, and in general, there
are two solutions for ki, one larger and one smaller than 1=2H (Wang et al. 1995).

The phase and group speeds of the two varieties of propagating gravo-acoustic
waves are given in full by Mihalas & Mihalas (1984), as are the amplitudes and
phases of the �rst-order uid variables U;W;D;�, and �. In the limits of high
and low frequency these quantities approach the purely acoustic or buoyancy wave
solutions found previously, and become more complicated for intermediate values.
The phase speed in the z-direction is easily computed from eq. (7.157), however,
and is

!

kr
= � a!2q

!2(!2 � !2a)� a2k2x(!
2 � !2g)

: (7:159)

Because most observed pulsation modes in hot stars have relatively low fre-
quencies and long horizontal wavelengths, it may be instructive to analyze gravo-
acoustic waves in this limit, as well as the limit of a purely isothermal medium.
When  = 1, the complex wavenumber kz is given by

2kzH = i�
s�

!

!a

�2
� 1 � 4H2k2x (7.160)

� 2i

("
1 +H2k2x �

1

4

�
!

!a

�2#
;

"
�H2k2x +

1

4

�
!

!a

�2#)
; (7.161)

where the latter approximation is in the limit of ! � !a and kxH � 1. This region
is clearly evanescent, as no internal gravity waves are possible when  = 1. Note
the existence of a rapidly-varying solution (kiH � 1) and a slowly-varying solution
(jkiHj � 1), which take the place of the upward/downward propagating solutions
in the evanescent limit. The velocity amplitudes in the  = 1 limit are

U =

 
kxa

2

!

!
D ; W =

iH

!

 
!2 � a2k2x
ikzH + 1

!
D ; (7:162)

and the rapidly-varying (+) solution for kz results in a wave mode with jW j � jaDj,
while the slowly-varying (�) solution results in jW j � jaDj.



201

7.2.6 A Subsonic Wind

Finally, consider a plane-parallel strati�ed medium with a slow (subsonic)
wind. In the limit of w0 � a, the isothermal density strati�cation is still exponential,
and the zero-order continuity equation demands

w0(z) = w0(0) exp(+z=H) ;
@w0

@z
=

@w0

@r
=

w0

H
: (7:163)

Thus, we can generalize the gravo-acoustic wave model above to include this nascent
ow. For simplicity, let us neglect any horizontal ow (u0 = 0) and restrict ourselves
to a purely isothermal medium ( = 1). The nontrivial dispersion relation is then

!02 � a2(k2x + k2z ) + igkz +
iw0

H

 
a2k2x � !02

!0

!
= 0 ; (7:164)

where !0 = ! � w0kz . After this substitution, this equation becomes a cubic in
complex kz , and can be solved analytically. Much simpler, however, is the vertical
propagation limit of kx = 0, which only results in a quadratic in kz. This is solved
by

(w2
0 � a2)kz = !w0 � i(w2

0 + a2)

2H
�
s
!2a2 � 2i!w0a2

H
� (w2

0 + a2)2

4H2
; (7:165)

and reduces, in the limit � � w0=a� 1, to

2kzH � i� �
�
!

!a

�
�
s�

!

!a

�2
� 1 � 4i�

�
!

!a

�
: (7:166)

Note that, even in the evanescent limit, there will always be a real part of kz, and
thus the presence of the wind helps all wave modes to propagate. This result is
signi�cant because it provides low-order NRP modes, many of which are evanescent
in the photosphere, a mechanism to begin to \tunnel" their way out into the wind.
The requirement, of course, is for these modes to have su�cient amplitude to survive
the static evanescent photosphere.

Acoustic modes are only slightly modi�ed by the wind, while evanescent
modes are strongly a�ected. In the high-frequency limit (! � !a),

2kzH � !

!a
(�1� �) + i(1� 2�) ; (7:167)

and in the low-frequency limit (! � !a),

2kzH �
��
2i� 3�

�
!

!a

��
;
�
�
�
!

!a

���
: (7:168)
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For these quasi-evanescent waves, then, the vertical phase speeds are large, but not
in�nite:

vp � !

Re(kz)
�
(
� a2

3w0
;
a2

w0

)
: (7:169)

Note that it is the slowly-varying evanescent solution (here with kiH � 0) which
corresponds to the outwardly-propagating wave, and the rapidly-varying evanescent
solution (here with kiH � 1) which corresponds to the inwardly-propagating wave.

7.2.7 A Supersonic Wind

Abbott (1980) examined the physical signi�cance of the critical point in CAK
line-driven winds by a linearized wave analysis in the comoving frame of the wind.
In order for the localized \wavenumber" picture to be valid, however, one must
assume wavelengths shorter than the zero-order density and velocity scale lengths,
but longer than the Sobolev length LSob (see Section 2.4). Abbott (1980) assumed
that perturbations to the radiative acceleration are dependent only on perturbations
in the radial velocity gradient. We thus re-cast the �rst-order expansion variable F1,
which represents the velocity dependence of the force (see eq. [7.80]) as

F1 = �ikzF2 ; where F2 � (@grad=@[@w=@r])0 ; (7:170)

which is a completely equivalent means of expressing the perturbed radiative accel-
eration (in the approximation that there is no other dependence on the velocity w).
Thus, ignoring nonlocal sphericity and strati�cation e�ects (1=H ! 0; @w0=@r ! 0)
and transforming into a comoving frame (u0 = w0 = 0), the dispersion matrix be-
comes ��������������

�ikx �ikz i! 0

0 i! + ikzF2 ��0F3 �ikz
i! 0 0 �ikx
0 0 �i!a2 i!

��������������
= 0 : (7:171)

Abbott (1980) also assumed that F3 = 0, which is valid for a point-star CAK force
when ! � @w0=@r (which is consistent with the assumption of wavelengths shorter
than the local scale heights). Thus, the dispersion relation reduces to

!3 + !2(kzF2)� !(a2k2x + a2k2z )� a2k2xkzF2 = 0 ; (7:172)

and is equivalent to Abbott's eq. (45).
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Because the radiation is directed in the vertical direction, horizontal (kz = 0)
perturbations propagate purely acoustically, but vertical (kx = 0) perturbations
propagate at modi�ed real radiative-acoustic phase speeds

C� � !

kz
= �F2

2
�
s�

F2
2

�2
+ a2 : (7:173)

In most regions of a line-driven wind, F2 � a, so that C+ � a2=F2, and C� � �F2,
signifying slower (subsonic) outward propagation and faster (supersonic) inward
propagation in the frame of the wind. At the mCAK critical point, C� = �w0, im-
plying zero net wave propagation in the inertial frame at this point. Note that Ab-
bott's C� modes are dispersionless (i.e., C� is not a function of kz) and non-damped
(i.e., kz is real, even for frequencies that would be evanescent in the photosphere),
and that wave amplitudes do not vary appreciably on local length scales. This is to
be expected: if the local density and velocity strati�cation is ignored, the medium
is e�ectively homogeneous, and no gravo-acoustic evanescence arises. However, we
�nd below (Section 7.2.8) that on the global scale of the entire wind, such modes
do vary systematically in amplitude.

Rybicki, Owocki, & Castor (1990) generalized Abbott's linear analysis to the
more general case of a perturbed radiative acceleration of the form

grad,1;i = Tij v1;j ; (7:174)

where the subscripts i and j refer to radiative acceleration and velocity perturbations
in the x, y, and z directions (i; j = 1; 2; 3), and Tij is in general a second-rank tensor.
An important new result for intermediate-wavelength (i.e., stable) perturbations is
that, for the radiative acceleration from a �nite stellar disk, the horizontal and
radial perturbations interact with one another. Purely horizontal (kz = 0) waves
propagate at a modi�ed phase speed

!

kx
= �

vuuta2 +
 
R2
�

4r2
F2

!2

; (7:175)

and purely radial (kx = 0) waves now have three possible modes: two with phase
speeds very close to Abbott's C�, and one slow inward \interaction" mode,

Cint � !

kz
= �R2

�

4r2
F2 : (7:176)

These modes are highly dependent on the sphericity of the stellar source of radiation,
but not on the overall spherical geometry of the medium. Thus, even in a near-star
Cartesian analysis, the limit r ! R� retains these important interaction terms.
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Because high-frequency radiative-acoustic waves occur in an assumed \ho-
mogeneous" background, the e�ect of a moving medium is included by the simple
substitution of ! for !0. For the case of purely vertical Abbott (1980) waves (with
kx = 0), the three solutions for the vertical wavenumber are simply

kz =

 
!

w0 + C�

!
;

�
!

w0

�
; (7:177)

the latter unphysical solution given by the formerly degenerate case !0 = !�w0kz =
0. The C� solution above creates an asymptote at the CAK critical point, below
which kz < 0 (inward propagation), and above which kz > 0 (outward propagation).
Owocki, Castor, & Rybicki (1988) found that the most robust wave modes (in the
extreme short-wavelength, unstable regime) start out on the stellar surface on the
C+ branch, then switch to the C� branch further out in the wind, thus always
remaining outwardly-propagating.

However, Owocki & Rybicki (1986) also determined that the supersonic in-
ward C� characteristic carries no true information, but is merely a local reconstruc-
tion of a smooth (long-wavelength) wave pattern. This e�ect is a manifestation
of the small-scale line-driven instability, and is an example of the generalized case
of an unstable medium where information need not necessarily travel at the local
group velocity (Bers 1983). In fact, in Owocki & Rybicki's (1986) pure-absorption
approximation, the sound speed a remains the true speed of inward information
propagation. Thus, Abbott's (1980) interpretation of the CAK critical point as a
\dam" below which information cannot propagate is called into question. Macro-
scopic perturbations in a hot-star wind, however, may still result in some structures
advecting along the C+ and C� characteristics, but it is still unclear how this subtle
technical issue is to be resolved in a more realistic wind model.

Although it is di�cult to apply the localized \wavenumber" picture to an
accelerating and strati�ed medium, it is possible to examine the simple case of 1D
wave propagation (u0 = 0, kx = 0) in an isothermal ( = 1) wind, in the absence of
radiative forces (F1 = F2 = F3 = 0). Let us de�ne the velocity scale height �J ,

1

J
= � 1

w0

@w0

@r
=
�
2

r
� 1

H

�
; (7:178)

and write the (3 � 3) dispersion matrix, neglecting U -terms:�����������

�ikz + 1=J i!0 0

i!0 � w0=J a2=H �ikz � 1=H

0 �i!0a2 i!0

�����������
= 0 ; (7:179)
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which reduces to

(w2
0 � a2) k2z � 2!w0kz � ikz

J
(w2

0 + a2) + !2 +
i!w0

J
= 0 : (7:180)

This equation can be solved for kz, but it is a complicated expression. In the
supersonic limit of w0 � a, however, the solution simpli�es to

kz � !

w0
+

i

2J
� i

2J
� !

w0
+

(
� i

w0

@w0

@r
; 0

)
: (7:181)

This solution obviously neglects the acoustic propagation terms which depend on a,
and the real part of kz gives a trivial phase speed of w0 (instead of w0�a). However,
the imaginary part of kz contains a solution with a decreasing (ki < 0) amplitude in
radius. Let us derive this amplitude, and ambitiously apply it to the global variation
of wave amplitude with radius.

Because wave amplitudes (D, W , etc.) all vary locally as exp(kir) in addition
to their sinusoidal oscillations, we can de�ne the nonlocal amplitude as proportional
to

A(r) / exp
�Z r

r0
ki(r

0) dr0
�
: (7:182)

Note, however, that there is no guarantee that all wave amplitudes will have this
same radial dependence. We will �nd, however, that short-wavelength or high-
frequency waves come close to this idealized limit. For the above variation of ki,
then,

A(r) / exp

"
�
Z r

r0

@

@r0
(lnw0) dr

0

#
/ 1

w0(r)
: (7:183)

This inverse velocity-amplitude dropo� occurs only in the supersonic wind, and
acts as a natural limiting factor to the exponential growth of wave amplitude in the
near-static photosphere (Section 7.2.5). Preliminary numerical models of supersonic
hot-star winds (see Figure 7.2) indeed show this behavior, at least for the highest
acoustic frequencies. However, global variations in the zero-order medium result
in the macroscopic wave variables ( ~D, ~W , etc.) all behaving slightly di�erently in
radius, thus invalidating the assumption of a single universal value of k.

7.2.8 Large-Scale Wave Propagation Analysis

Our eventual goal is to incorporate all the above e�ects { gravity, radiative
forces, and a moving medium { into a model of wave propagation in an accelerating
stellar wind. Grz�edzielski (1971) initially investigated some of these e�ects in the
solar wind, but the neglect of the energy equation (in favor of a universally-applied
polytropic index) in that work makes even the results for a stationary medium di�er
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from ours above. In the limit of a static, plane-parallel atmosphere, Grz�edzielski's
(1971) dispersion relation predicts purely acoustic waves, as in eq. (7.128) above,
for all frequencies in the isothermal propagation limit of  = 1 (i.e., no evanescence
at all). This is clearly unphysical, but the remainder of Grz�edzielski's predictions
(such as the existence of zero-density-amplitude \gravity-shear" waves) still remain
to be examined.

A useful formalism for analyzing the global variation of wave amplitudes is
the conservation of wave action. This is a generalization of the conservation of
wave energy density in the case of a moving medium. Also, it is the uid-continuum
analogue of Hamilton's classical principle of least action for, e.g., the motion of a
discrete harmonic oscillator.

Landau & Lifshitz (1987) give the wave energy density for acoustic waves in
a moving medium,

E =
1

2
�0v

2
1 + �1v0 � v1 + a2�21

2�0
; (7:184)

where the vector velocity v = uêx+wêz, and the above is a second-order perturba-
tion quantity. Using eq. (7.134) above for v1, this energy density can be rewritten
as

E = E0
�

!

! � v0 � k
�

; (7:185)

where E0 is the wave energy density in the comoving frame (i.e., when v0 = 0).
We can conveniently de�ne the wave action S � E0=(! � v0 � k), and note that it
is this quantity that is conserved throughout the wind. Landau & Lifshitz (1987)
interpret this from a quantum standpoint, as the number of wave \phonons" being
independent of the choice of inertial reference frame.

Bretherton & Garrett (1968) and Jacques (1977) derive the equation of con-
servation of wave action,

@S
@t

+r � (vgS) = 0 ; (7:186)

which reduces in our case of a steady-state and spherical mean wind to

1

r2
@

@r

�
vg;rSr2

�
= 0 : (7:187)

The quantity in parentheses is constant in radius. For pure acoustic waves propa-
gating in the radial direction, this quantity is

vg;rSr2 = (w0 � a)

"
�0w

2
1

!

�
1 � w0

a

�#
r2 (7.188)

/ �(w0 � a)2w2
1

w0
; (7.189)
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and this implies

jw1j /
s

w0

(w0 � a)2
; (7:190)

or that, in the supersonic limit, jw1j / w
�1=2
0 . Parker (1966) derived this result

in the WKB limit for outwardly-propagating waves in an isothermal wind, but the
wave action picture is potentially more general. Note that this result is qualitatively
similar, but not identically the same as eq. (7.183), which predicted wave amplitudes
to drop o� as w�1

0 .

Figure 7.2 shows the radial variation of the density amplitude D for prelim-
inary numerical VH-1 models of winds perturbed by radial (kx = 0) gravo-acoustic
base oscillations. The density and pressure at the base are varied in time according
to the static isothermal gravo-acoustic modes derived in Section 7.2.5, with  = 1,
and the radial velocity is allowed to \oat" so the wind can determine a unique
mass ux. The hydrodynamical simulation was allowed to evolve in time until all
transient variations propagated away, leaving only the periodic oscillations. The
lower boundary of the model was driven with a small linear amplitude (D = 0:01),
and the straight lines at negative values of z in Figure 7.2 show the ideal (static
limit) growth of the imaginary part of the wavenumber ki. Note that for evanes-
cent modes, the more slowly growing solution matches the numerical variation of
amplitude in the wind, and in Section 7.2.5 we determined that this solution was
outwardly-propagating in the subsonic wind. Note also that, past the sonic point of
the ow (at z=R� � 0:008), the amplitude variations for all modes behave similarly,
and begin to drop o� as w�1

0 , as approximated above in Section 7.2.7.

Another important consideration in global wind wave propagation is the e�ect
of �rst-order waves on themean zero-order ow. In general, the wave action equation
and the zero-order equations of motion are a coupled system of di�erential equations,
but in many cases the e�ect of waves can be modeled by a \wave pressure tensor"
which provides a source of momentum to the mean ow. This formalism has been
applied to solar wind models by, e.g., Jacques (1978) and Leer, Holzer, & Fl�a (1982);
to general Alfv�en-wave driven winds by Hartmann &MacGregor (1980), Velli (1993),
and MacGregor & Charbonneau (1994); and to early-type stellar winds by Koninx
& Hearn (1992). However, for acoustic waves of reasonable base amplitude, there is
only a minimal wave-pressure impact on the mean wind, and we will not explicitly
include these terms in our linear analysis. Of course, the full hydrodynamic solution
of the equations of motion may contain a slightly-altered \mean" state (w0; �0), and
it will be interesting to see how important radiative-acoustic waves are in altering
the unperturbed zero-order wind.

Another type of wave-impact on the mean ow has been suggested for Be stars
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Figure 7.2: Fractional density amplitudes for near-star wind oscillations of a B
supergiant (see, e.g., ` = 0 modes in Figure 7.1). Solid lines represent
modes that are able to propagate in the static isothermal photosphere,
and dotted lines represent evanescent modes. Note that as the wind
accelerates, the solid and dotted lines behave similarly and only di�er
by a constant factor in the supersonic wind.
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by Osaki (1986): angular momentum transport from a rotating star. In the coro-
tating equatorial plane, the radial ux of angular momentum is given by r�0hu1w1i,
where the angle-brackets denote an average over one oscillation period. Stars ex-
hibiting adiabatic nonradial pulsations, however, have u1 and w1 varying 90� out of
phase { implying zero mean angular momentum ux. Saio (1994) suggests that pro-
grade nonaxisymmetric (m < 0) and nonadiabatic modes can transport signi�cant
amounts of angular momentum outward to form a dense \decretion" disk around
the star. In our present wind models, nonadiabaticity is not necessary to produce
a phase di�erence other than 90� between U and W . The acceleration, strati�ca-
tion, and radiative terms can produce this e�ect. It will be interesting to see if
self-consistent wave models can be made to exhibit azimuthal velocities di�erent
enough from u0 � 1=r to show this transport.

7.3 Nonlinear Wave E�ects

The theory of wave motion developed above applies well to small-amplitude
(linear, �rst-order) perturbations in a uid. However, larger amplitude disturbances
are a�ected by the nonlinear terms in the hydrodynamic equations. Finite-amplitude
acoustic waves \steepen" into shock discontinuities, while �nite-amplitude internal
gravity waves steepen and \break," like ocean waves, into dissipative turbulent
motions. Also, since we know that linear wave trains must eventually steepen into
nonlinear structures, we need to analyze what types of discontinuities can occur in
the uid variables and their gradients in an accelerating stellar wind. For example,
the \kinks" in the radial velocity and density in the CIR models of Chapter 6 are
a qualitatively new phenomenon which we hope to better understand by analyzing
these nonlinear e�ects.

7.3.1 Weak-Shock Wave Steepening

Let us examine the principal steepening e�ects of nonlinear waves in a heuris-
tic way. It is possible, via the theory of Riemann invariants (see, e.g., Landau &
Lifshitz 1987), to derive a nonlinear correction term for the phase speed of a wave
in the direction of propagation. For dispersionless acoustic waves, the nonlinear
generalization of the simple amplitude relation

V = �aD (7:191)

is the integral expression Z
dv = �

Z
a(�)

d�

�
; (7:192)

where for large amplitudes, the phase speed �a of such \simple waves" is now a
function of the instantaneous velocity or density. This relation is coupled with the
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kinematic fact that the true de�nition of the \phase speed" in a disturbance is now
given, for di�erent points in the wave pro�le, by slightly di�erent values:

vp(n̂) � !

k � n̂ + [v1(r; t) � n̂] : (7:193)

For simplicity, assume purely radial propagation. We can then write, schematically,

vp;r(nonlinear) = vp;r(linear) + �w1 ; (7:194)

where � is an order-unity correction factor that takes into account the higher-order
dependence of the phase speed on the density or velocity. For pure-acoustic and
adiabatic waves, � = (+1)=2 (Landau & Lifshitz 1987). For Abbott (1980) waves,
in the supersonic limit of F2 � a, the Riemann invariant theory gives � � 1 � �,
for the C� modes (see Chapter 2 for the CAK de�nition of �).

In the linear limit of jw1=vp;rj � 1, this correction is negligible. When w1 is
larger, however, the nonlinear phase speed can be strongly a�ected. For w1(r) /
Re[exp(�ikrr)], the \crests" of this sinusoid propagate faster than the linear phase
speed, and the \troughs" propagate slower. In a �nite time, or over a �nite distance,
the crests eventually overtake the troughs and form a sawtooth-pattern train of weak
shocks. This nonlinear e�ect competes, in some cases, with the exponential growth
of wave amplitude in a strati�ed photosphere. When, say, D � � � 1, or when jU j
or jW j surpass the local sound speed, then the linearized uid equations no longer
are valid. We �nd, however, that the presence of the wind naturally can limit this
wave growth, and in fact causes amplitudes to begin to decrease around the sonic
radius.

Let us estimate the distance Z over which a wave of a speci�ed amplitude
will steepen into a shock. Consider an initial waveform propagating in the radial,
or +z direction, with

w1(z) =
~w1

2
cos

�
2�z

�

�
; (7:195)

where kz = 2�=�. A wave crest will meet and overtake its next highest \zero-point"
(where w1 = 0) when the crest travels a distance (Z + �=4) in the same time the
zero-point travels a distance Z. This occurs when

�

4
=
Z T

0
�vp(t) dt �

Z Z

0
�vp(z)

dz

v
(0)
p

; (7:196)

where v(0)p is the linear (unperturbed) value of the phase speed, and

�vp = � [w1(0)� w1(�=4)] =
� ~w1

2
: (7:197)
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In a homogeneous medium, ~w1 is constant in z, and it is trivial to solve for

Z =
v(0)p �

2� ~w1
: (7:198)

Similarly, for an exponentially-strati�ed static atmosphere, we �nd that

~w1 = ~w1(0) exp(z=2H) (7:199)

and

Z = 2H ln

"
v(0)p �

4H� ~w1(0)
+ 1

#
: (7:200)

Castor (1987) developed a di�erent scaling estimate for the height Z of shock
formation, which roughly agrees with the above analysis. By assuming the medium
is disturbed by the motion of an upward-moving \piston," the creation of a shock is
incumbent upon there being a net change in the piston's acceleration. If the piston
were constantly accelerating, it would only produce an atmospheric \standing wave,"
with the atmosphere's acceleration matching that of the piston. For the piston
position given by z(t) = z0 + z1 cos(!t), its velocity amplitude is W / !z, and its
rate of change of acceleration is

@3z

@t3
= !2W : (7:201)

At each instant during the piston's motion, it emits sound waves, where later-
departing waves have a larger absolute velocity (due to the exponential growth
of gravo-acoustic modes). Thus, waves necessarily begin to cross each other when a
\cusp" forms in the r-t diagram, and a shock forms at the height

Z � 1

3

vuut a3

@3z=@t3
� g

3!
p
aW

H ; (7:202)

for acoustic waves, with v(0)p = a. For either this or the above analysis, Z is of the
order (1 � 10)H for plausible early-type star values.

Gravo-acoustic waves, which inevitably grow with height, have an additional
local means of reaching nonlinear amplitudes. This provides us with further ways
to estimate where either shock formation or wave breaking occurs. First of all,
the �rst-order linearized uid equations break down when the amplitudes grow too
large:

jDj � 1 ; j�j � a2


; j�j � 1 ; (7:203)
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and, for acoustic-like waves, when the velocity amplitudes jU j and jW j surpass the
sound speed a. For internal gravity waves, Mihalas & Toomre (1981) discuss various
criteria for the onset of nonlinearity. The most clear condition is when the second-
order buoyancy terms in the energy equation grow to the magnitude of the �rst-order
terms, or when

j@�1=@z � (1=a2)@P1=@zj
j@�0=@z � (1=a2)@P0=@zj �

����� g

!2BV

 
1

�0

@�0
@z

� ikz

! �
D � �

a2

������ � 1 : (7:204)

When this condition is satis�ed, the convective stability is signi�cantly increased in
some parts of the atmosphere, and decreased in others, leading to local instabilities
and eventual dissipative mixing.

7.3.2 Discontinuities in Fluid Variables

In order to determine whether a given uid quantity can be discontinuous
across a small spatial interval at radius r, we must integrate the conservation equa-
tions of these quantities across this interval. Because this interval is assumed to be
vanishingly small, any smoothly-varying function f0 (such as a function of radius
only) is considered constant across the interval. Thus, between r1 and r2 (where
�r � (r2 � r1)! 0), Z r2

r1
f0(r)dr � f0�r ! 0 : (7:205)

Variables allowed to be discontinuous across �r can be approximated by the piece-
wise continuous form

f �

8>>>>><
>>>>>:

f1 ; r � r1

f1 + (r � r1)(�f=�r) ; r1 < r < r2

f2 ; r � r2

; (7:206)

where �f � f2�f1. The integral of such a variable across �r is similarly negligible,
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#
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2

!
�r ! 0 : (7:207)

However, the integral of the radial gradient of this discontinuous variable does not
vanish, and Z r2

r1

@f

@r
dr =

 
�f

�r

!
�r = �f : (7:208)
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Also, if we assume that the discontinuity is moving with a velocity s � �r=�t
(with �r � �r and �t � tf � ti), we �nd that the integral of the time derivative of
f is �nite. We can approximate

Z r2

r1

@f

@t
dr =

@

@t

Z r2

r1
f dr �

R
f(tf )dr � R f(ti)dr

tf � ti
; (7:209)

and for ti and tf occurring when the assumed pattern (eq. [7.206]) is a distance �r=2
below and above its given location, one obtains
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The 1D (spherically-symmetric) mass continuity equation (eq. [7.67], neglect-
ing the @=@� terms), when integrated over �r, becomes

� s��+�(�v) = 0 ; (7:213)

or in a more familiar form,

(v2 � s) �2 = (v1 � s) �1 : (7:214)

The momentum equation can be integrated similarly, but special care must be taken
when integrating the radiative acceleration term. For a simple Sobolev force from a
point star, for example,
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and
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which, because �r ! 0, vanishes for � < 1. The slowly-varying �nite disk cor-
rection factor � = �(r; v; @v=@r) does not alter this result, since if the velocity v is
represented by the piecewise continuous eq. (7.206), � becomes a simple function of
r only:

� � 1� (1� �)1+�

�(1 + �)
; (7:219)
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the last approximation being that �r � r1�v=v1. Thus, for our present purposes,
�(r) can be assimilated into C(r), and the �nite disk factor ignored.

Thus, the momentum jump condition is una�ected by the radiative acceler-
ation, and is given by integrating eq. (7.68) over �r,

� s�(�v) + �[�(v2 + a2)] = 0 ; (7:221)

or, using eq. (7.214) to rewrite,

�2[(v2 � s)2 + a2] = �1[(v1 � s)2 + a2] : (7:222)

The assumed isothermality (i.e., constancy of a) admits the simpli�ed solutions,

(v1 � s)(v2 � s) = a2 ;
�2
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�2
; (7:223)

or, if the inertial-frame velocities v1 and v2 are known, the shock velocity is given
by

s =
�
v1 + v2

2

�
�
s�

v1 � v2
2

�2
+ a2 : (7:224)

The density contrast �2=�1 can reach arbitrarily high values, as shown by the fact
that the limiting value of this ratio for adiabatic shocks, ( + 1)=( � 1), diverges
for  = 1. Note also that contact discontinuities, where v1 = v2 = s, P1 = P2, but
�1 6= �2, are not allowed in the isothermal case, because if P1 = P2, then �1 = �2
automatically.

7.3.3 Discontinuities in Gradients

Abbott (1980) expressed the equations of motion in \quasi-linear" form by
taking the radial derivative @=@r of every term. De�ning the velocity and density
gradients as two new variables, the di�erentiated equations of motion become
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= x (7.225)
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Let us now consider discontinuities in the gradient variables x and y, but only
those cases where v and � themselves remain continuous. This ansatz isolates weak
discontinuities, or \kinks" in the ow density and velocity, and distinguishes their
behavior from the shocks discussed above.

Integrating over the small interval �r is done in a similar way as for the
original equations of motion, and and the above eqns. (7.227) and (7.228) are written
such that their left-hand sides contain the \jump" terms which remain �nite upon
integration. The quasi-linear mass continuity equation becomes

��x+ (v � s)�y = 0 ; (7:229)

and the quasi-linear momentum equation becomes

(v � s)�x+
a2

�
�y ��grad = 0 ; (7:230)

where
�grad � grad(r; v; �; x2)� grad(r; v; �; x1) : (7:231)

Note that these jump-condition equations result from an integral of the di�erential
of the original conservation equations, and thus have the same dimensionality as the
original equations. It is, however, the choice of which variables to keep continuous
(� and v) and which to let \jump" (x and y), that distinguishes these equations
from the original conservative forms. Finally, if we de�ne the \nonlinear Abbott
speed" VA as

VA � �grad
�x

; (7:232)

then the momentum equation can be written ash
(v � s)2 � a2 � VA(v � s)

i
�x = 0 (7:233)

(where �y has been eliminated via eq. [7.229]). This equation provides a constraint
on the kink propagation velocity s, since in order for a nontrivial kink to exist at
all (�x 6= 0), we must have

(v � s)2 � a2 � VA(v � s) = 0 ; (7:234)
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or

s = v � VA
2
�
s�

VA
2

�2
+ a2 (7.235)

= v + C� : (7.236)

This is an alternate means of proving that weak discontinuities must propagate
along uid characteristics. These characteristics are speci�ed by VA, which is the
nonlinear generalization of the linear \Abbott speed" F2 for small perturbations. It
is simple to see that for a vanishingly small value of �x, VA would approach the
partial derivative of the unperturbed grad with respect to x, which is precisely the
linear F2.

Note that the quasi-linear mass continuity equation can now be written sim-
ply as

�y

�x
=

�

C�

; (7:237)

which helps to determine the sense of the gradient discontinuities. For kinks propa-
gating along the positive (C+ > 0) characteristics, �x and �y must have the same
sign. For kinks propagating along the negative (C� < 0) characteristics, �x and
�y must be of opposite sign. This is a nonlinear generalization of the velocity-
density correlation of simple linear acoustic (or modi�ed radiative-acoustic) waves.
Outwardly propagating (C+) waves have their velocity and density oscillations in

phase, and inwardly propagating (C�) waves have their velocity and density oscil-
lations 180� out of phase. This is in qualitative agreement with the sharp velocity
and density kinks produced in the models of corotating stream structure in Chapter
6.

With the present development of velocity-gradient discontinuities as \shocks"
in the quasi-linear dynamical variables x and y, we hope to bring to bear the ex-
tensive theory of shock waves developed over the last century to understand better
these important and possibly observable features. Whether these idealized struc-
tures survive in the actual unstable and non-Sobolev winds is still to be determined.
This is an example, however, of the value of the study of hot-star winds to the �eld
of radiation hydrodynamics as a whole: providing a \laboratory" to explore regions
of physics that are inaccessible under terrestrial conditions.


