
Chapter 5

RAPID STELLAR ROTATION: WIND COMPRESSED

DISKS

It was forged in mills where the winter

Beats incessant; ten winters the disc

Unremitting endured the cold hammer.

William Blake, The Book of Ahania

In the previous Chapter we studied the e�ects of stellar rotation on the line-
driven wind from a hot star, mainly by con�ning ourselves to the plane of the
equator (� = �=2) and assuming azimuthal symmetry. In this Chapter we relax the
former assumption and examine wind dynamics in the full meridional plane, while
still retaining symmetry about the rotation axis. Stellar rotation inuences the
wind outow through centrifugal and Coriolis forces that enforce angular momen-
tum conservation, generally tending to deect material toward the equatorial plane
and thus enhancing the density and mass outow there. Bjorkman & Cassinelli
(1993; hereafter BC) have proposed this simple and powerful \wind compressed
disk" (WCD) paradigm for explaining how rotation can deect wind ow stream-
lines toward the equatorial plane to possibly form shocked disks. Owocki, Cranmer,
& Blondin (1994; hereafter OCB) generally con�rmed BC's kinematic picture using
a numerical hydrodynamics code, but found several quantitative di�erences from
BC's original analytic model.

Section 5.1 outlines BC's original idea of wind compression, and also dis-
cusses several subsequent re�nements and insights into the general phenomenon.
Section 5.2 examines in detail how oblateness and gravity darkening of the under-
lying star alters the radiative driving of the wind, and describes initial attempts
to model how this a�ects the wind outow itself. This Section incorporates results
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from Cranmer & Owocki (1995) and Owocki, Gayley, & Cranmer (1996). Section
5.3 displays computed theoretical P Cygni line pro�les and continuum polarization
from hydrodynamical models of rapidly-rotating winds, but this modeling is still in
progress. Finally, Section 5.4 presents a preliminary analysis of the dynamics of the
thin shocked disk which occurs in some rapidly rotating WCD models.

5.1 The Basic Wind Compression E�ect

The original model of BC contained two relatively independent components:
(i) the wind compression that arises from the overall equatorial deection of the
wind, and (ii) the shocked disk which can form if compression streamlines attempt
to cross the plane of the equator. OCB has shown that the approximations BC used
to compute the wind compression, with several minor modi�cations, are essentially
valid, while their model of the disk itself is less reliable. Thus, in the present
analysis, we will concentrate only on extensions to the analytic wind compression,
and momentarily ignore the consequences of the presence of a shocked disk.

The analytic models of BC are essentially kinematic, in that the radial wind
velocity is speci�ed as a function of radius r and colatitude �, and centrifugal and
Coriolis forces then deect these radial streamlines toward the plane of the equator.
The essential assumption of a supersonic wind (thus allowing \uid particles" to be
treated as pressureless and non-interacting Newtonian tracers) is reasonably valid,
as long as the wind is assumed to be rigidly-rotating with the star below the sonic
point. Thus, the particle streamlines are determined solely by the external forces:
gravity and radiative acceleration. Angular momentum conservation con�nes these
trajectories to an \orbital plane" perpendicular to the initial angular momentum
vector. Although BC model the radial velocity as a \beta law" (eq. [2.119]), with
v1 a function of the stream's initial colatitude �i, we can generalize to the case of
arbitrary velocity laws at the pole and the equator (external to any disks). At all
latitudes, we thus de�ne

vr(r=R�; �i) = vpoler (r=Rp) [1��(�i)] + veqr (r=Req)�(�i) ; (5:1)

where we de�ne the \latitude interpolation" function �(�i). This form is meant to
be a generalization of BC's radial velocity �ts, and indeed reduces to their model
when: (1) the radial velocities are assumed to follow a beta-law, and (2) the star is
spherical. This function is given by

�(�i) � [1 � (R�(�i)=Req)! sin �i]
 � 1

(1 � !) � 1
: (5:2)

The exponent  was found, through �ts to Friend & Abbott's (1986) equatorial wind
models (with rotation and a uniformly bright �nite disk), to be  � 0:35. However,
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the results of Poe (1987) indicate that for O-stars,  � 0:5 (see also Ignace et al.
1996). BC and OCB specify the latitude-dependent mass ux _M(�i) from similar �ts
to Friend & Abbott's (1986) models. We have similarly generalized this formalism,
given polar and equatorial values for _M , in order to compute the local density �(r; �):

_M(�i) = _Mpole

"
1� R�(�i)

Req

! sin �i

#�
; (5:3)

where � � �0:43 from Friend & Abbott's models, but is uniquely determined, from
� � log( _Meq= _Mpole)= log(1 � !), given the polar and equatorial values. Note,
however, that strict mass conservation along streamlines demands that

_M(�i)d(cos �i) = 4��(r; �)vr(r; �)r
2d(cos �) ; (5:4)

and this expression is used to determine the local density �(r; �). (BC; Ignace et al.
1996).

The motion in the orbital plane around an inclined azimuthal angle �i is
speci�ed by the local conservation of angular momentum, and

v�i(r; �i) =

R�(�i)2 sin �i

r
: (5:5)

Note that BC's factor of Vrot � Veq sin �i has been consistently replaced with Vrot �

R�(�i) sin �i, which is not strictly equivalent for an oblate star, but more accurately
takes the whole star's rigid rotation into account. The speci�cation of vr and v�i
allows orbital trajectories to be computed, and the resulting equation of motion,
found from the ratio of these two velocities, is integrated from the sonic point Rs to
obtain the value of the inclined azimuthal angle traversed by the streamline,

�i(r; �i) =
Z r

r0=Rs

v�i(r
0; �i)

r0vr(r0; �i)
dr0 : (5:6)

BC and Ignace et al. (1996) use a kinematic beta law for vr, and are able to evaluate
this integral analytically. Given these trajectories, one can determine the velocity
vector �eld in the wind, v = vrr̂ + v��̂ + v��̂, and the density scalar �eld �, using
the geometrical relations derived by BC. Speci�cally,

v� = v�i(cos �i sin �) (5.7)

v� = v�i(cos �i cos � cos� + sin � sin �i) ; (5.8)

where cos � = tan �i= tan �, and

� =
_M (�i)

4�r2vr

"
cos �i +

cos2 �i
sin �i

d�i
d(sin �i)

sin �i

#�1
: (5:9)
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Note that, in order to specify v and � for an arbitrary \grid" point (r; �), one must
�rst solve for the initial colatitude �i of the streamline which passes through the
given point in the wind, and this usually involves numerically �nding the root of
the trajectory equation (5.6) that also satis�es BC's geometrical transformation,
cos � = cos �i cos �i.

At high latitudes, rapid rotation causes wind streamlines to deect away from
the poles and toward the equatorial plane. These uid streamlines are diverging
faster than r2 (spherical expansion), and this a�ects the conservation of mass which
in turn impacts on the equation of motion. Kopp & Holzer (1976) and MacGregor
(1988) investigate this e�ect in the context of magnetically enforced non-spherical
expansion, and MacGregor �nds (for point-star CAK winds) that although the mass
loss rate is seldom strongly a�ected, the asymptotic wind velocity can be enhanced
in regions of rapid ow divergence. Let us derive the appropriate non-spherical
expansion factor for wind over the poles of a rapidly rotating star.

Consider a small initial streamline colatitude �i, assuming sin �i � �i and
cos �i � 1 � �2i =2. The divergence of this streamline, always in�nitesimally close
to the pole (thus R�(�i) � Rp), will provide the necessary non-spherical divergence
factor required in the mass continuity equation. We can approximate the motion in
the inclined orbital plane by

v�i(r; �i) �

R2

p �i

r
; (5:10)

and the inclined azimuthal angle �i (eq. [5.6]) is then given by

�i(r; �i) � 
R2
p �i

Z r

r0=Rs

dr0

r02 vr(r0)
: (5:11)

What is needed, however, is the angle � of the streamline itself as a function of
radius. Using one of BC's geometrical transformations, and realizing that all angles
are small,

cos � = cos �i cos�i�
1� �2=2

�
�

�
1� �2i =2

� �
1� �2i =2

�
: (5.12)

Neglecting fourth order terms, we �nd that

�(r) � �i
q
1 + (�i=�i)2 : (5:13)

Note that (�i=�i) depends only on the radius r (eq. [5.11]), and can be computed
analytically if a beta-law is assumed for the radial velocity (BC; Ignace et al. 1996).
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To be able to write the mass continuity equation, we must parameterize the
area of a given polar (or near-polar) ux tube. Assuming azimuthal symmetry,

A(r) = 2�
Z �(r)

0
r2 sin �0 d�0 = 2�r2 [1� cos �(r)] : (5:14)

Thus, following Kopp & Holzer (1976), this area can be written as the product of
the area at the stellar surface A� with the spherical and non-spherical factors of
expansion,

A(r) = A�

�
r

R�

�2

f(r) ; (5:15)

where

f(r) =
1 � cos �(r)

1� cos �i
� �(r)2

�2i
� 1 +

 
�i
�i

!2

: (5:16)

It is this non-spherical factor f(r) which is inserted into the mCAK equation of
motion, and which can strongly a�ect the wind dynamics over the pole of a rotating
star (see MacGregor 1988 and Section 5.2.5, below).

5.2 The Oblate Finite Disk Factor

This Section begins the process of eliminating certain approximations used
in computing the radiative acceleration on the wind. Although OCB formulated the
two-dimensional (2D) wind dynamics exterior to an oblate stellar surface in order
to properly de�ne the centrifugally distorted hydrostatic boundary, they assumed
a purely radially-directed radiation force from a spherical, non-rotating star. In
order to produce more self-consistent and accurate models, we present here the
theoretical formalism for including the e�ects of stellar oblateness, limb darkening,
and gravity darkening on the radiation force. In addition, we subsequently estimate
the dynamical impact of such phenomena on the winds and WCDs around B stars.
The actual inclusion of such forces in the time-dependent hydrodynamics is deferred
to subsequent work, however, because of their inherent complexity and the increased
computational expense.

Without actually computing these complex multidimensional forces, it is dif-
�cult to assess even the sense of their e�ect on the resulting wind dynamics. While
oblateness and gravity darkening over the equator could lead to an overall decrease
in the acceleration (due to the reduced ux), the higher radiative ux emanating
from the poles could in turn \pinch" the force toward the equator, thus increasing
the tendency to form a disk. By computing the fully oblate and gravity-darkened
vector force, we thus begin to disentangle these various competing e�ects from each
other, as well as evaluate their relative importance in the wind and disk dynamics.
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5.2.1 Geometrical Considerations

Let us set up the geometrical formalism required to compute the general ra-
diative acceleration integrals. Consider an azimuthally-symmetric oblate star cen-
tered on an origin, with its surface denoted by spherical polar coordinates R�(�), �,
and �, and a �eld point in the wind, a distance ro from the origin, inclined an angle
�o from the z axis, and in the x-z plane (i.e. �o = 0). De�ne a new, \wind-centered"
coordinate system by rotating the y axis by an angle �o and translating the origin to
the position of the �eld point. Thus, the new z0 axis points away from the center of
the star, in the r̂o direction, the new x0 axis points in the �̂o direction, and the new
y0 axis is parallel with the old y axis (see Figure 5.1). Using Cartesian coordinates,
the transformation between the two systems is given by

x0 = x cos �o � z sin �o

y0 = y (5.17)

z0 � ro = x sin �o + z cos �o :

To evaluate the radiative acceleration integrals, both the direct stellar intensity and
the projected velocity gradient must be evaluated for arbitrary rays n̂, directed
from points on the stellar surface to the �eld point at the transformed origin. The
necessary angular integrations are thus most conveniently expressed in terms of the
transformed spherical polar coordinates r0, �0, and �0.

Before being able to evaluate the stellar intensity IC(n̂), it is necessary to
know at what point the ray n̂ intercepts the stellar surface. For a spherical star with
no limb or gravity darkening, this information is never needed, but the position-
dependent e�ective temperature Te�(�) is required in the present case to compute
the stellar intensity. For a given ray n̂, speci�ed by wind-centered angles �0 and �0,
there are, in general, either zero, one, or two possible values of r0 which intercept
the stellar surface, corresponding to rays lying outside, on, or inside the limb of
the star, respectively. In the case of two solutions, of course, the smaller of the two
values for r0 corresponds to the more physically relevant (nearer) point on the oblate
surface. We �nd these solutions numerically by transforming the point referenced
by wind-centered coordinates (r0; �0; �0) into star-centered coordinates (r; �; �), and
computing the corresponding surface radius R�(�). If r = R� for the given value of
r0, then the ray n̂ exactly intercepts the stellar surface, and the star-centered angle
� can be used to compute the gravity-darkened e�ective temperature, and thus the
intensity.

For arbitrary locations in the wind, the direct speci�c intensity from points
on the star is given by

IC(r; n̂) = �BT
4
e�D(r; n̂) ; (5:18)
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Figure 5.1: Coordinate geometry for the computation of the oblate �nite disk
(OFD) factor. The star-centered (un-primed) and wind-centered
(primed) coordinate systems are shown, related by the position of
the �eld point.
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where the e�ective temperature is evaluated on the point at which the ray n̂ inter-
cepts the oblate stellar surface. The linear limb darkening function is similar to that
used for a spherical star,

D(r; n̂) =

8><
>:

0; outside the limb,

(2 + 3�00)=4�; inside the limb,
(5:19)

but �00, the cosine of the angle between the local normal to the surface (opposite
the local gravity) and the ray angle n̂, must be speci�ed more precisely by

�00 = �g � n̂jgj : (5:20)

Note from, e.g., Figure 2 of Cranmer & Owocki (1995), that it is only for nearly
equator-on views that limb darkening has a large qualitative impact on the appear-
ance of a gravity darkened star.

The projected velocity gradient n̂�r(n̂�v), which resembles the rate-of-strain
tensor in uid dynamics, has been derived for a general 3D geometry by Batchelor
(1967) and Koninx (1992). The assumption of azimuthal symmetry in this work
somewhat simpli�es this complex expression:

n̂ � r(n̂ � v) =
 
@vr
@r

!
a21 +

 
1

r

@v�
@�

+
vr
r

!
a22 +

 
vr
r
+
v� cot �o

r

!
a23 +

 
@v�
@r

�

v�
r
+
1

r

@vr
@�

!
a1a2 +

 
@v�
@r

!
a1a3 +

 
1

r

@v�
@�

!
a2a3 +

�
v�

r sin �o

�
a3a4 ; (5:21)

with trigonometric factors de�ned by

a1 = nr = nz0 = �0

a2 = n� = nx0 =
p
1 � �02 cos �0

a3 = n� = ny0 =
p
1 � �02 sin �0

a4 = @n�=@� = �nx = ��0 sin �o �
p
1� �02 cos �0 cos �o

(5:22)

and using the standard notation �0 = cos �0.

Finally, we can explicitly write the oblate �nite disk (OFD) factors in terms
of the transformed coordinates, and following eq. (2.73),

�C =
4�r2o
L�

I
�BT

4
e�(�)D(r; n̂) n̂ d�

0d�0 (5.23)

�L =
4�r2o

L�(@vr=@r)�

I
�BT

4
e�(�)D(r; n̂) [n̂ � r(n̂ � v)]� n̂ d�0d�0 : (5.24)
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We can use the r, �, and � components of n̂ (found from the trigonometric factors
a1, a2, and a3 above) to obtain the respective components of �C and �L. Note that
�C� is identically zero because of symmetry about the x0-z0 plane in the ux. The
corresponding line factor �L� , however, is not zero, because the v�-component of the
wind ow breaks this symmetry.

Although the OFD integrals require numerical evaluation in the most general
case, the continuum OFD factor �C has a rather simple limit as the �eld point
approaches the surface of the star (i.e. ro = R�). On the surface, the emergent
vector ux is given wholly by the e�ect of von Zeipel gravity darkening (see Section
4.1), and depends only on the inclination colatitude �o,

�C(r = R�) =
4�r2

L�
F = �4�R2

�(�o)

�1
g(�o) : (5:25)

Thus, using the expression for the r and � components of the e�ective gravity from
Section 4.1,

�Cr (r = R�) =
4�GM�

�1

2
41 � 8

27

 
R�(�o)

Rp

!3

!2 sin2 �o

3
5 (5.26)

�C� (r = R�) =
4�GM�

�1

2
4� 8

27

 
R�(�o)

Rp

!3

!2 sin �o cos �o

3
5 : (5.27)

Note that, as expected, the radial force points outward, and the equatorward (�)
force points toward the poles, indicating that as the star becomes more attened,
the local normal vectors to the stellar surface point more and more toward the �z
directions. The fact that �C� = 0 is evident, at least at the stellar surface, because
g� is identically zero.

5.2.2 Representative B Star Model

Our basic B-star model is the standard S-350 model of OCB, a B2.5 main
sequence star, chosen because it lies near the middle of the nominal range of spectral
types for the Be phenomenon. Speci�cally, we take M� = 7:5M�, Rp = 4R�,
L� = 2310L� , and Te� = 20000 K. An equatorial rotation velocity of 350 km s�1

is used, because it exhibits a moderate degree of oblateness, gravity darkening, and
wind compression, and it corresponds to a fractional angular velocity of ! = 0:89325.
We assume an isothermal wind of temperature Te�, corresponding to a sound speed
of 16.53 km s�1, and use the line-driving constants � = 0:51, k = 0:609, and
� = 0:166 (BC, OCB). In the most general case, these constants probably vary with
latitude and distance from the star, but for simplicity we assume they remain �xed
throughout the wind.
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Table 5.1: Oblate Finite Disk Wind Models

S-350 A A1

rcrit(0
�)=Rp | 1.06910 1.05547

rcrit(90
�)=Rp | 1.35253 1.35253

vr(6Rp; 0�) (km/s) 1221.54 1098.05 1304.39
vr(6Rp; 90�) (km/s) 489.07 559.23 559.23

�e� (2Rp; 0�) 0.65050 0.71712 0.77445
�e� (2Rp; 90�) 1.41291 1.04191 1.04191

_M (0�) (10�10M�/yr) 3.158 5.926 6.269
_M (90�) (10�10M�/yr) 16.96 12.32 12.32

� (2Rp; 90�)=� (2Rp; 0�) 14.3948 8.66475 9.07238

max(v�) (km/s) 74.593 60.168 58.637
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Table 5.2: Oblate Finite Disk Wind Models, continued

B C D E

rcrit(0
�)=Rp 1.03328 1.03548 1.03614 1.03557

rcrit(90
�)=Rp 1.35443 1.35177 1.35153 1.35160

vr(6Rp; 0�) (km/s) 2145.33 1987.36 2001.96 2000.94
vr(6Rp; 90�) (km/s) 817.54 797.02 799.07 798.86

�e� (2Rp; 0�) 0.92815 0.90088 0.90325 0.90305
�e� (2Rp; 90�) 1.31931 1.29759 1.29928 1.29905

_M (0�) (10�10M�/yr) 5.775 5.723 5.729 5.726
_M (90�) (10�10M�/yr) 3.086 3.093 3.096 3.096

� (2Rp; 90�)=� (2Rp; 0�) 2.98853 2.84927 2.86214 2.86212

max(v�) (km/s) 53.862 54.408 54.353 54.344
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The wind from this model star can be speci�ed either using the semi-analytic
WCD compression paradigm or by numerically modeling the 2D wind hydrodynam-
ics. Tables 5.1 and 5.2 show several characteristic wind quantities for the various
wind models to be discussed. The standard OCB numerical model S-350, and a cor-
responding semi-analytic model A, are computed using the uniformly-bright spher-
ical �nite disk factor �un (eq. [2.78]), evaluated using the polar value of the stellar
radius at all latitudes. The polar and equatorial values of vr(r) and _M for model A
were computed in one dimension (1D) using a modi�ed CAK (mCAK) code, with
centrifugal forces and arbitrary �nite disk factors included, and which performs the
standard critical point analysis and solves the radial momentum conservation equa-
tion (see Friend & Abbott 1986; Pauldrach, Puls, & Kudritzki 1986). Abbott's
(1982a) correction term for the radiative acceleration, proportional to (�=W )�, is
included in these models, but the standard 1D form of the dilution factor W is
assumed, using the value of the stellar radius corresponding to the colatitude of the
�eld points (i.e. either 0� or 90�). The other wind models in Tables 5.1 and 5.2 all
assume the semi-analytic wind compression formalism of Section 5.1, use successive
approximations to the OFD factors derived above, and will be discussed further be-
low. The exponent �e� is de�ned as in eq. (2.129), and the tabulated \equatorial"
values from the 2D hydrodynamics code are taken at � � 87:1�, outside the shocked
disk, in order to more clearly compare with the pure wind-compression models.

5.2.3 The Continuum Oblate Finite Disk Factor

Let us �rst examine the continuum OFD factor �C, which depends only on
the stellar intensity and not the wind. Although the continuum acceleration in
O and B stellar winds is a relatively unimportant piece of the dynamical problem
(because often, � � 1), we will �nd that, to zero order, �C and �L behave in similar
ways. Thus, an understanding of the oblateness and gravity darkening e�ects in the
former is essential for understanding the latter.

Figures 5.2 and 5.3 display the radial and latitudinal components of the
continuum OFD factor, �Cr and �C� , for our representative model. Note that the
dominant e�ect in both components follows the sense of the \sub-stellar" surface
gravity darkening derived above (eq. [5.26] and [5.27]). This implies that, for an
arbitrary point in the wind, most of the star's ux appears to come from an e�ective
temperature corresponding to the point on the star nearest to the �eld point, where
the limb darkening function is a maximum. Thus, �Cr varies roughly monotonically,
from a maximum at the bright poles to a minimum at the darker equatorial plane,
and �C� is negligibly small at the poles and equator, where the normal to the stellar
surface is radial, and reaches a negative (poleward) maximum in the mid-latitudes.
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Figure 5.2: Combined contour and line plots of the radial (r) continuum OFD
factor for the standard oblate B-star model. The line plots at the
bottom of each panel illustrate the variation with radius for �eld points
at inclinations of 0 (pole-on), 45, and 90 degrees (equator-on). The
radial coordinate varies from 0 at the latitude-dependent stellar surface
to 1 at in�nity.
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Figure 5.3: Combined contour and line plots of the latitudinal (�) continuum
OFD factor for the standard oblate B-star model. The line plots at
the bottom of each panel illustrate the variation with radius for �eld
points at inclinations of 0 (pole-on), 45, and 90 degrees (equator-on).
The radial coordinate varies from 0 at the latitude-dependent stellar
surface to 1 at in�nity.
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This sub-stellar gravity darkening, although dominant near the surface, is
modulated by three other important e�ects in the circumstellar regions. First, as
one moves away from the star, a larger fraction of the stellar surface, and thus a
wider range of e�ective temperatures, is seen and integrated over. Points over the
poles will see more and more of the darker equator, and points near the equatorial
plane will see more of the bright poles. This e�ect is easily seen in �Cr as ro ! 1,
which begins to decrease near the poles and increase near the equatorial plane, and
in �C� , which becomes positive as ro ! 1, indicating a small degree of bright-to-
dark equatorward acceleration. The second e�ect, which also becomes important
at large distances from the star, is that the ux vector in the wind becomes more
and more radial in direction, and the star appears more like a point source of ux.
This primarily a�ects �C� , driving it to zero as ro ! 1, and only weakly a�ecting
�Cr because the ux vector is always nearly radial.

The third e�ect on �C is somewhat more subtle, and has an impact at all
distances from the star, but is relatively small in magnitude. The oblateness of the
star causes a purely geometrical change in the continuum OFD factor, which is the
ratio of the ux from an oblate surface to that from a perfect inverse-square point
or spherical source. As the �eld point moves from the stellar surface (ro = R�)
into the wind, the surface seen is either larger (over the poles) or smaller (over the
equator) than is expected for a corresponding sphere extending out from the initial
surface point. For example, over the pole (�o = 0), an observer at ro ! 1 sees a
circular disk with area �R2

eq, but the spherical point-ux \Gaussian surface" over
the poles would have radius Rp and an observed surface area �R2

p. The ratio of the
observed to the expected areas provides a rough magnitude for this e�ect on the
OFD factors, and can be seen in �Cr for small ro as a slight increase near the pole
and a slight decrease near the equator.

Before examining the more dynamically important line OFD factor, one �nal,
and initially surprising feature of �C should be discussed. OCB anticipated that the
inclusion of gravity darkening could lead to a \pinching" e�ect in the acceleration,
with the force from the bright poles con�ning and diverting an increased acceleration
toward the equatorial plane. This gravity-darkening e�ect is indeed seen in the limit
of large ro, but is always of negligible magnitude and dominated by the sub-stellar
gravity darkening, Te�(�o). The fact that �C� is negative at mid-latitudes near the
star indicates that, not only is pinching toward the equator unimportant, but the
ux is usually directed away from the equator toward the poles. Geometrically,
this should come as no surprise, because the ultimate extreme of an oblate star is
a at disk, with normal vectors pointed solely in the �z directions, away from the
equator. Thus, if an enhanced equatorward force is desired for the production of
stronger WCDs, it will not be found from oblateness and gravity darkening alone.
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5.2.4 The Line Oblate Finite Disk Factor

The line OFD factor �L is shown in Figures 5.4, 5.5, and 5.6, and was com-
puted using the wind velocity from the initial semi-analytic model A. The small-scale
numerical noise in these �gures comes mainly from the discrete computation of the
velocity derivatives in the r and � directions. To zero order, the radial factors �Cr
and �Lr behave very similarly. Roughly, the factor �Lr can be considered as a \convo-
lution" of the angle integral over the oblate and gravity darkened intensity, �Cr , and
the angle integral over the projected velocity gradient term. This latter integral is
given in the spherical limit by �un or �limb, and, to an overall accuracy of � 15%,
one can indeed model �Lr � �Cr �un, where �un is evaluated using the stellar polar
radius. Di�erences between this approximation and the true value of �Lr stem from
the absence of nonradial velocity components in �un, and of course from the fact
that one cannot rigorously split up the integration over a product into the product
of two integrals.

The latitudinal component of the line factor �L� also resembles the correspond-
ing continuum factor �C� , but does not exhibit as large a range of positive values for
large �eld point radii. Also, near the stellar surface �L� approaches zero because the
dominant terms in the projected velocity gradient term n̂ � r(n̂ � v) grow negligibly
small for small radii. The latitudinal velocity v�, as well as the gradients @v�=@r and
@vr=@�, contribute most strongly to the latitudinal OFD factor. Near and below the
sonic point, these three terms all grow small when compared to the radial gradient
@vr=@r which normally dominates the �nite disk factor near the stellar surface.

The line OFD factor in the azimuthal direction �L� has no continuum coun-
terpart, and should be understood solely in terms of the projected velocity gradient
term n̂ �r(n̂ �v). Note from Figure 5.6 that this factor is always negative, and thus
directed in the opposite direction from the star's rotation. The surface magnitude
of �L� implies that the wind could be signi�cantly \spun down" from its angular
momentum conserving azimuthal velocity. This fact, combined with the similarly
negative sense of �L� , seems to indicate that the overall e�ect of both nonradial
OFD factors can be modeled to zero order by simply decreasing the star's equato-
rial rotation velocity Veq. In the WCD paradigm, both v� and v� in the wind are
most strongly inuenced by the azimuthal orbital-plane velocity v�i, which depends
directly on Veq.

The negative sense of �L� can be understood by examining the projected
velocity gradient term, equation (5.21), and noting that the only terms to produce
a variation in the �-component of the integrand (and thus non-cancellation when
multiplied by n�) are those dependent on v� and @v�=@r. For an outward ray n̂ tilted
in the positive �, or prograde direction, the projected component of v� decreases
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Figure 5.4: Combined contour and line plots of the radial (r) line OFD factor for
the standard oblate B-star model, with wind speci�ed by the semi-
analytic model A. The line plots at the bottom of each panel illustrate
the variation with radius for �eld points at inclinations of 0 (pole-on),
45, and 90 degrees (equator-on). The radial coordinate varies from 0
at the latitude-dependent stellar surface to 1 at in�nity.
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Figure 5.5: Combined contour and line plots of the latitudinal (�) line OFD
factor for the standard oblate B-star model, with wind speci�ed by
the semi-analytic model A. The line plots at the bottom of each panel
illustrate the variation with radius for �eld points at inclinations of
0 (pole-on), 45, and 90 degrees (equator-on). The radial coordinate
varies from 0 at the latitude-dependent stellar surface to 1 at in�nity.
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Figure 5.6: Combined contour and line plots of the azimuthal (�) line OFD factor
for the standard oblate B-star model, with wind speci�ed by the semi-
analytic model A. The line plots at the bottom of each panel illustrate
the variation with radius for �eld points at inclinations of 0 (pole-on),
45, and 90 degrees (equator-on). The radial coordinate varies from 0
at the latitude-dependent stellar surface to 1 at in�nity.
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as one moves outward. However, for an outward ray n̂ tilted in the negative �, or
retrograde direction, the component of v� along the ray is negative, and increases
(grows less negative) as one moves outward. Thus, when summed with the other,
usually positive gradient terms in equation (5.21), rays in the retrograde direction
have a stronger contribution to the integrand. The net e�ect is the \retrograde
shear" (discussed in Section 4.3) that directs �L� away from the direction of stellar
rotation.

The semi-analytic model A, which provides the wind velocity �eld for the
computation of the line OFD factor, contains only wind compression, and no shocked
equatorial disk. If the velocity �eld of the numerical model S-350 were to be used
in the computation of �L, however, the presence of a disk would strongly a�ect
the values of the line OFD factor near the plane of the equator. Although this
calculation is beyond the scope of this work, its general impact should be considered.
The equatorial disks found by OCB contain a drastic reduction in both the radial
and latitudinal velocities, while the azimuthal velocities remain roughly continuous
with the exterior wind. The gradients of vr and v�, however, are maximum at
the edges of the disk, where strong compression (and also high temperatures and
\superionization") is thought to occur. The magnitudes of the OFD factors �Lr and
�L� should be signi�cantly enhanced in these regions, then possibly return to nearly
their exterior wind values once well inside the disk. Although this enhancement
provides a possible mechanism for depositing added density in the equatorial regions
(through stronger latitudinal forces), de�nitive results will have to wait until a more
self-consistent dynamical calculation is performed.

5.2.5 E�ect on a Radiation Driven Wind

Once the OFD factors have been computed, we can implement them in the
solution of the dynamical equations of motion and examine their overall impact on
the 2D wind. However, the numerical evaluation of the OFD integrals, equations
(5.23) and (5.24), is quite computationally expensive, and until recently it has been
impractical to include this velocity-dependent quadrature into the time-dependent
hydrodynamics. It is still possible, though, to anticipate some of the e�ects of
oblateness and gravity darkening. First of all, because electron scattering is only a
relatively minor e�ect in the winds of late O and early B stars (� � 1), we may
ignore the impact of the continuum OFD factor �C on the dynamics of the wind.
Also, in order to allow approximate 1D solutions of the equations of motion, let us
consider only the impact of the radial component of the line OFD factor �Lr on the
wind over the poles and the equator. We can employ the same 1D mCAK method
used for model A to �nd solutions for vr(r) and _M along these two loci of wind
points, but with the radial OFD factors used instead of the spherical �nite disk



114

factor �un. This de�nes the �rst step in an iterative process, designed to �nd a
quasi-self-consistent wind solution:

1. Compute polar and equatorial vr(r) and _M using 1D mCAK code.

2. Determine wind compression velocities in r, �, and � directions, using modi�ed
BC semi-analytic model (see Section 5.1).

3. Use this velocity �eld to re-integrate the OFD factor �Lr for points over the
poles and equator.

4. Repeat steps 1 to 3 until solutions settle to consistent values.

Note that, although this procedure disregards the e�ects of the nonradial OFD
factors at all latitudes, and only estimates the radial OFD factor at mid-latitudes,
it can provide a �rst estimate of how the overall wind compression will be a�ected
by the presence of pole-to-equator variations in the radiative acceleration.

Before actually carrying out this iterative process, let us consider one addi-
tional, and possibly important, 2D e�ect: the polar streamline divergence derived
above in Section 5.1. Model A1 in Table 5.1 was computed using this polar non-
spherical divergence, and its polar terminal velocity (represented by the radial ve-
locity at 6 polar radii) and its equator-to-pole density contrast agree slightly better
with OCB's numerical model S-350, which naturally contains this 2D e�ect. In
the equatorial regions there would seem to be the opposite e�ect { streamline con-
vergence { but pressure forces, ignored in the simple wind compression picture of
Section 5.1, act to redirect the ow into a nearly radially outowing disk.

Starting with the original initial model A, models B through E in Table 5.2
were computed using the above iterative process and polar non-spherical divergence.
Self-consistency seems to have been reached in the four iterations shown. The overall
e�ect of the polar and equatorial radial OFD factors is a general weakening of the
BC wind compression, as shown by the equator-to-pole density contrast, which is
only � 30% of its original (non-OFD) value. Note that this density ratio does not
include the shocked disk expected to form at the equator, but the strength of the
disk in part depends on the amount of wind compression immediately exterior to
it. The polar and equatorial wind terminal velocities are both increased by factors
of 1.5 to 2, and the velocity laws using the OFD factors accelerate toward their
terminal values over a longer distance (i.e., they are less \steep"). The local mass
ux over the pole is virtually unchanged, while the mass ux over the equator has
decreased by a factor of four. This can be understood at the pole by the competition
between the generally larger OFD factor and the non-spherical divergence factor,
while at the equator the generally smaller OFD factor (due to gravity darkening)
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acts alone to decrease the radiation force, and thus the local amount of mass loss
(see eq. [4.31]).

We caution that, although this dynamical analysis contains much of the
physics derived for the OFD factors above, it ignores all nonradial force compo-
nents in the OFD factor, and only treats the radial components approximately. In-
deed, preliminary 2D hydrodynamical models which incorporate these OFD forces
evolve to qualitatively di�erent solutions than predicted above. Owocki, Gayley, &
Cranmer (1996) show that the small poleward and retrograde forces in the � and
� directions actually result in the complete inhibition of the BC equatorial wind
compression e�ect. This conspires with the net decrease in _M over the equator due
to gravity darkening (see Section 4.2) to further decrease the predicted equatorial
density enhancement. In the most rapidly rotating models there is even a density
minimum at the equator, and bipolar higher-density \lobes" around the poles. The
apparent contradiction between these (seemingly robust) theoretical results and the
inferred detection of WCDs around O and B stars in several cases (e.g., Bjorkman
et al. 1994; Harries & Howarth 1996) is currently being examined. Of course, as
Ignace et al. (1996) have indicated, in systems where line driving and gravity dark-
ening are not expected to occur, the BC wind compression paradigm is still likely
to represent an important dynamical component of the circumstellar matter around
rotating stars.

5.3 Line Pro�les and Polarization

The SEI line synthesis method discussed in Chapter 3 can be extended to
winds without spherical symmetry, and in this Section we present P Cygni line pro-
�les from a representative two-dimensional axisymmetric WCD model. The oblate
stellar \boundary" is taken into account numerically, and the wind's velocity and
density variations in r and � are transformed into an arbitrary observer-centered
coordinate system. Figure 5.7 shows P Cygni line pro�les of the A1 model wind
presented in Section 5.2 above, for observers at various inclinations. The \standard"
line parameters of Section 3.1.4 are used: kL = 1, �o = 0, vturb = 100 km s�1, and
�i =  = 0.

The most evident inclination-dependent variations are due to the decreasing
terminal velocity and increasing mass ux from pole to equator. Note that this wind
compression model does not contain a shocked disk, and thus the line pro�les do
not show the strong low-velocity \shelf" feature found by Bjorkman et al. (1994)
in theoretical P Cygni pro�les of stars with equatorial disks. More complete multi-
dimensional hydrodynamical models, such as those of Owocki, Gayley, & Cranmer
(1996), do not contain strong WCDs, and in fact exhibit a decreasing mass ux
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Figure 5.7: Theoretical (SEI) P Cygni line pro�les for the A1 analytic wind com-
pression model wind. Observers at i = 0, 22.5, 45, 67.5, and 90 degrees
are shown.
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from pole to equator. Preliminary computations of P Cygni line pro�les and pho-
tospheric diagnostics such as H� (see, e.g., Petrenz & Puls 1996) show signi�cant
di�erences between these paradigms, and this promises to aid in identifying the
actual circumstellar distributions of matter around rotating O and B stars.

Figure 5.8 shows the continuum electron-scattering polarization for both the
A1 wind compression model and the S-350 hydrodynamical WCD model computed
by OCB. The code written to calculate this polarization integrates over the wind
volume exterior to the oblate star, but performs the solid-angle integration (in, e.g.,
eq. [3.46]) over a non-gravity-darkened spherical surface of radius Rp. The overall
approximate dependence on sin2 i, as discussed in Section 3.2 for an axisymmetric
non-occulted envelope, is evident, and deviations from sin2 i arise from the occul-
tation of material behind the star. Note the di�erence in magnitude between the
models with and without a shocked wind compressed disk; the polarization increases
by a factor of 20 when the thin WCD is included, and its presence seems necessary
to generate an observable amount of polarization in the weak winds of B stars. How-
ever, in the much denser winds of O stars, even modest wind compression without
a disk can generate a signi�cant continuum polarization (�0.3% for � Puppis; see
Harries & Howarth 1996).

5.4 An Idealized 1D Model of the Shocked Disk

For hot stars where equatorial wind compression is present, OCB found that
the dynamics within the shocked disk is markedly di�erent from the predictions of
Bjorkman & Cassinelli (1993). Because the Sobolev line driving scales inversely
with the gas density, the material in the disk is not accelerated as strongly as the
remainder of the wind, and this results in a net inow of matter onto the star
beneath a \stagnation point" ro, which moves outward with increasing rotation
velocity. Because of the sharp contrast between the rapid equatorial wind ow
exterior to the disk and the slow pressure-con�ned ow interior to the disk, it may
be possible to model the dynamics of the disk in one dimension, and treat the
\input" of mass and momentum from the wind as an external boundary condition.
Bjorkman (1992) began to construct such a model, but assumed the detached-disk
paradigm of BC. In this Section we outline some of the key equations in a 1D model
of a shocked disk with a stagnation point. Note, however, that this analysis is still
at a preliminary stage of development, and the main purpose of this Section is to
document these initial steps in the problem.
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Figure 5.8: Optically-thin electron scattering polarization for the A1 analytic wind
compression model (left curves), and for the S-350 numerical hydrody-
namics wind model (right curves). Solid lines show the numerically-
computed polarization variations with inclination, and dashed lines
show the square of the sine of the inclination, normalized to the equa-
torial polarization.
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5.4.1 Equations of Motion

In order to model the interior of a shocked equatorial wind compressed disk
(WCD), several assumptions must be made. First, because numerical models have
shown that the disk is extremely thin, let us consider it to be ideally planar, and
replace the 3D volume mass density � with a 2D surface density �, expressed as mass
per unit area in the disk. Second, because of the relative success of the analytic wind
compression model (Bjorkman & Cassinelli 1993; Owocki, Cranmer, & Blondin 1994;
Cranmer & Owocki 1995), we can consider the input of mass and momentum into
the disk as known, and thus write the uid equations with \source terms" of mass
and momentum deposited from the exterior wind.

In general, the 2D uid equations of mass and momentum conservation can
be written in conservative form as

@�

@t
+r � (�v) = jo (5:28)
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@t
(�vr) +r � (�vvr) + @Pe�
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� �gr = jr (5:29)
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(�v�) +r � (�vv�) + 1
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@Pe�
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� �g� = j� ; (5:30)

where jo, jr, and j� are the source terms of mass and linear momentum in the radial
(r) and azimuthal (�) cylindrical-coordinate directions, respectively, and the vector
g represents a general external acceleration. Note that the divergence operation is
taken in the 2D equatorial plane only, and the e�ective \pressure" Pe� here has
units of force per unit length.

The source terms can be written in terms of the actual mass density and
ow velocity of the wind, denoted by �w and w, exterior to the disk. Consider an
in�nitesimally small volume �V embedded in the equatorial disk. The volume �V
can be written

�V = �z �A = (wz �t) �A ; (5:31)

with �A being the projected area of the volume in the equatorial plane, and �t
being an in�nitesimal time interval over which the wind ows through the vertical
(z) extent of the volume. The vertical velocity wz of the wind entering from above
is given by wz = w� sin ��wr cos �, but is approximately equal to w� itself near the
equatorial plane. Although we are utilizing a continuum description of the uid, let
us momentarily de�ne a number N of uid particles (each of mass m) in the volume
�V , and N = �w �V =m. Thus, the \creation rate" of particles in the disk, per unit
area per unit time, is de�ned as

S � N

�A �t
=

�w
m

wz ; (5:32)
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and the source terms of mass and linear momentum are given simply by

jo = mS ; jr = mwrS ; j� = mw�S : (5:33)

These terms are similar to the \mass loading" sources in energetic solar-wind plas-
mas, where conservation of individual ionic species is violated by ionization and
charge-exchange processes (see, e.g., Story 1996). Note that the wind density �w
and velocity w are functions of position, given by the Bjorkman and Cassinelli
(1993) analytic wind compression model, and thus the source terms can be consid-
ered known as well.

With the derived source terms, and the assumptions of azimuthal symmetry
and steady state, the uid conservation equations in the equatorial plane become
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By expressing divergences as cylindrical \slab-like" derivatives we implicitly assume
a at disk, with a constant scale height h. Later, however, we will be able to use a
relationship between � and the volume density � to estimate how h may vary with
radius. The two above momentum equations can be simpli�ed by appropriately
separating the products in the di�erentiations on the left-hand side, and using the
mass continuity equation. These two equations thus simplify to
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The quantity jo=� has units of inverse time, and can be considered a kind of \mass
injection rate" which sets the scale for the r and � accelerations.

For the present, let us leave the azimuthal momentum equation, and assume
v� to be known (usually, v� � 1=r, which conserves angular momentum). Note that
we cannot immediately neglect the pressure gradient term in the radial momentum
equation, because the wind velocity inside the disk can become arbitrarily small. If
an isothermal wind is assumed, with sound speed a, and an idealized 2D equation of
state Pe� = �a2 is applied, the radial equation of motion can be written in terms of
a mass ux variable J � �vrr, and the two governing di�erential equations become

dJ

dr
= j (5:39)



121

 
vr � a2

vr

!
dvr
dr

= gr +
v2�
r
+
a2

r
+
jor

J

h
vr(wr � vr)� a2

i
; (5:40)

de�ning j � jor = �wwzr as a \linear" mass ux into the disk.

The external acceleration term gr in general contains both gravity and the
e�ects of radiative driving:
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(see CAK; Abbott 1982a; Friend & Abbott 1986). In the remainder of this analy-
sis, however, we will consider a simpli�ed form of the radiative driving, neglecting
Abbott's (1982a) ionization correction (� = 0), and assuming a point source of ra-
diation (� = 1). Note, however, the presence of the 3D mass density � in the line
acceleration. This can be dealt with in the present 2D model in one of two ways:
(1) replace � by the quantity �=h, where h is a representative radially-dependent
disk scale height, or (2) use the simple ram pressure balance given by BC for an
ideally at disk,
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In the following, we will use the latter assumption, and assume � to be a known
function of radius. This implies that once we solve for �(r), we automatically have
h(r), and we can evaluate the validity of the above thin-slab approximation directly.
As an aside, if we assume h to have a given value, this allows us to estimate � and
turn the equation of motion into a purely algebraic equation for v(r). This method,
though, is unreliable because of the extremely sensitive dependence on this choice
for h. Finally, then, we can express the e�ective external acceleration as 
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; (5:43)

with both g(r) and k(r) being known positive quantities.

The unknown mass ux J(r) can be easily integrated, given an initial con-
dition from which to integrate. A convenient radius to choose is the \stagnation
point" ro, at which vr � v = 0. Numerical studies have shown that there is an inner
disk inow (v < 0) below this radius, and outow (v > 0) above it. Figure 5.9 shows
the functions j(r) and J(r) for the S-350 model of OCB. Because the location of the
stagnation point is not known a priori, J(r) is known only relative to an unknown
additive constant, and three representative choices are shown. Note, however, that
the mass-supply function j(r) is sharply peaked in radius, rapidly approaching zero
both as r ! R� and as r!1. This implies that J , its integral, varies most rapidly
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Figure 5.9: Upper curve: Mass-loading source term j(r), which is sharply peaked
near the stagnation point. Lower curve: Integrated source of mass
ux J(r), unknown to within an additive constant. J(r) crosses zero
at the stagnation point.
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where j is at its peak, and should cross zero very near this point. The actual posi-
tion of the stagnation point for the S-350 numerical model is ro = 2:03Rp, which is
close to the peak of j(r) at � 2:2Rp.

We can represent the equation of motion as
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If we choose � = 1=2, it becomes possible to solve for the velocity gradient quadrat-
ically, and
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5.4.2 Stagnation Point Analysis

At the stagnation point, v = 0, several terms in the equation of motion grow
without bound. The equation here becomes dominated by the two sound-speed
terms in this limit:
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but this is just an expression of L'Hôpital's rule, because, as v! 0, J ! 0, and

j(r)v(r)
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! dv
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: (5:47)

Although this implies that solutions passing through the stagnation point may be
non-unique, this exact cancellation of the sound-speed terms is fortuitous because
it allows us to ignore these terms in the analysis of the overall disk dynamics. This
is analogous to the zero-sound-speed approximation in the standard CAK analysis
(Section 2.3.2), which is valid in most of the wind.

To better obtain a physical understanding of the \mass loading" source term
in the radial momentum equation, let us also momentarily ignore the radiative forces

and the e�ects of rotation. Although the use of this assumption would not reproduce
full numerical models of wind compressed disks (i.e., OCB), we �nd that the solution
topology of these one-dimensional disk winds is quite complex even without radiation
forces and rotation. It is important to �rst understand the e�ects of the source terms
in isolation before considering the full problem. The equation of motion, then, is
approximated by

v
dv
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+ g � jv(wr � v)

J
= 0 ; (5:48)
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where here g = GM�=r
2. If we demand a �nite acceleration through the stagnation

point ro, L'Hôpital's rule provides the value of the velocity gradient and surface
density there:  

dv

dr

!
o

=
g(ro)

wr(ro)
; �o =

jo(ro)wr(ro)

g(ro)
: (5:49)

The only unknown quantity here is the value of ro itself, but a reasonably good
approximate value is given by the peak of j(r) in, e.g., Figure 5.9.

Let us examine the solution topology of the above di�erential equation by
writing it in dimensionless form; i.e., by de�ning the variables

x � 1� ro
r

; y � vq
GM�=ro

; ~w � wrq
GM�=ro

(5:50)

where x ranges from a negative constant (1� ro=R�) at the stellar surface, through
zero at the stagnation point, to unity as r !1. The variables y and ~w are scaled
to an escape-speed-like quantity at the stagnation point. For simplicity let us also
assume that j and ~w are constants in the wind, implying that J � j(ro)(r � ro) in
the vicinity of the stagnation point. The equation of motion is then given by
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= �1 + y( ~w � y)

x(1� x)
; (5:51)

or in a more standard form for nonlinear di�erential equations,

dy
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=

x(x� 1) + y( ~w� y)

xy(1� x)
: (5:52)

There are four singular points of this equation, where both the numerator and
denominator approach zero:

1. (x = 0; y = 0): This is the stagnation point, where L'Hôpital's rule gives the
�nite velocity gradient

dy

dx
=

1

~w
; (5:53)

which agrees with eq. (5.49) above. However, solutions of in�nite slope are
also formally possible at this point, implying that the stagnation point is a
\nodal" type singular point with a very pathological nature (see, e.g., Holzer
1977).

2. (x = 1; y = 0): This is a threshold point at which the wind decelerates to zero
velocity at r ! 1, and the �nite velocity gradient is a mirror image of the
above:

dy

dx
= � 1

~w
: (5:54)

This nodal point also admits in�nite-slope solutions.
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3. (x = 0; y = ~w): This solution is uninteresting in the present analysis because
it implies full \entrainment" of the disk velocity at the external wind velocity
at the stagnation radius, and this is not expected to occur.

4. (x = 1; y = ~w): This \attractor"-like point represents full entrainment as
r ! 1, which is a realistic assumption for winds that actually are propelled
to in�nity by the external wind source terms.

Figure 5.10 shows the solution topology for this simpli�ed form of the equa-
tion of motion for two values of ~w on opposite sides of unity. The dotted lines are
loci of zero slope solutions (i.e., when the numerator of eq. [5.52] vanishes), and the
four singular points are also intercepted by these loci. Solutions which pass through
the stagnation point (x = 0, y = 0) attempt to stay on the �nite-slope solution
dy=dx = 1= ~w, but any in�nitesimal perturbation makes them switch to near-in�nite
slope solutions, branching o� in an unstable way. Solutions which decelerate from
the �nite-slope line receive a slight enhancement in the surface density �, and this
eventually ampli�es into an over-dense solution that must decelerate to zero veloc-
ity (and possibly \crash" back down in a time-dependent manner). Solutions which
accelerate from the �nite-slope line grow less dense, and thus may be able to accel-
erate out to in�nity if there is su�cient added momentum from the source term.
This multiplicity of possible solutions is a direct result of the nonlinearities in the
governing ODE, and when more realistic physics is incorporated, this degeneracy
may be lifted.

Note that for the ~w = 0:8 topology there is insu�cient momentum being
added to the wind to accelerate any solutions to in�nity, and all velocity laws y(x)
which pass through the stagnation point eventually decelerate to zero velocity. For
the ~w = 1:2 topology, however, some solutions have enough momentum to counteract
gravity and accelerate to the \entrainment" velocity y = ~w at x = 1. The fact that
~w is scaled to the escape speed at ro provides the physical justi�cation of only ~w �> 1
solutions being able to entrain disk solutions to in�nity.

Radii beneath the stagnation point, for which we assume the velocity is di-
rected inwards toward the star (i.e., x < 0, y < 0) exhibit di�erent types of solutions
from the above. Despite the existence of in�nite-slope solutions immediately below
the stagnation radius, a stable and convergent decelerating solution appears to exist
when integrating downward from x = 0. Because the majority of the mass-loading
occurs around the stagnation point, the solutions at lower x values are causally de-
termined from higher radii, and the stability of this part of the velocity law seems
assured.

The obvious next step in this analysis would be to consider the radiative
driving and centrifugal terms in the equation of motion, but at this preliminary stage
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Figure 5.10: Solution topology to the dimensionless 1D wind compressed disk
equation of motion, without radiation or centrifugal forces. The up-
per curve shows a small value of the external wind velocity (0.8);
a situation where not enough momentum is provided to propel the
wind to in�nity. The lower curve shows a large value of the external
wind velocity (1.2); a situation where the wind can be propelled to
in�nity, but some decelerating solutions are still possible.
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we have not yet explored these e�ects. To zero order, we expect that radiative forces
should not be extremely important in very dense wind compressed disks (because of
the ��� dependence in the Sobolev line force). However, for observed B-star rotation
rates, OCB found that actual WCDs are only enhanced in density by factors of 10{
100 over the polar wind, and radiative forces in the disk may be signi�cant. Certainly
the presence of another outward force would help the radial velocity in WCDs to
accelerate out to in�nity, and possibly may lift the solution degeneracy around the
stagnation point.

Finally, then, the utility of this one-dimensional model of a disk must be
critically examined. The two-dimensional numerical hydrodynamics solutions show
the disk velocity laws to be quite stable and well-behaved. Thus, if the extreme
instability and degeneracy of the 1D solutions persists when all relevant physics
has been included, then the only remaining di�erence between the methods is the
treatment of the latitudinal direction. It may be the case that the only accurate way
to study the phenomenon of WCD formation is in two dimensions, with the \source
terms" modeled self-consistently, together with the disk. This would represent the
failure of the present 1D formalism, but no matter the outcome, we will have learned
a great deal about the physics of wind-fed disks around rotating stars from this
attempt.


