Chapter 4

RAPID STELLAR ROTATION: CENTRIFUGAL
EFFECTS

And the light shone in darkness and
Against the Word the unstilled world still whirled
About the centre of the silent Word.

T. S. Eliot, Ash Wednesday

In this Chapter we begin to study the impact of rotation on a star and its
wind. Dynamics in a noninertial reference frame requires the consideration of ficti-
tious forces, such as the centrifugal and Coriolis forces for uniform rotation, in order
to be able to express, e.g., Newton’s laws of classical motion in the standard manner.
However, we wish to solve for the stellar wind in the inertial (nonrotating) frame, and
the centrifugal and Coriolis forces become embedded in the non-Cartesian spherical
geometry terms (o< v?/7) in the momentum conservation equations, eq. (2.5)—(2.7).
Before dealing with the effect of these terms on an expanding wind, though, we
must assess how the underlying stellar interior and photosphere are affected by ro-
tation (Section 4.1). Only then can we begin to examine the interaction between
the now-moving atmosphere and the radiation-driven wind. Expansion in the equa-
torial plane (8 = 7/2) is studied in Section 4.2, where we find that steady-state
wind solutions may not exist for sufficiently rapid rotation. Finally, the form of the
Sobolev line force is re-examined in Section 4.3, and we discuss the possible exis-
tence of “shear” wind solutions which can drastically alter the angular momentum
of the wind.
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4.1 Oblateness and Gravity Darkening

Tassoul (1978) and Smith (1987) review the physics of rotating stellar inte-
riors, and conclude that most normal main sequence and giant stars rotate nearly
uniformly. Although evolution may lead to significant differential rotation in the
deep interior, observational constraints are still quite ambiguous, and most obser-
vations are consistent with uniform or near-uniform rotation. The most obvious
effect of rotation on the star is that it becomes flattened, or oblate. As opposed to
incompressible fluid bodies, centrally-condensed stars do not conserve volume upon
increasing their rotation velocity; Papaloizou & Whelan (1973) found the maximum
decrease in the polar radius to be only ~ 3%, but the maximum increase in the
equatorial radius to be as much as ~ 50%. Let us then assume that a star’s polar
radius R, is a constant, and determine how its shape at other latitudes depends on
rotation.

The gravitational potential of a uniformly rotating body can be approximated
by assuming a pointlike concentration of mass M, at its center, and superposing a
standard “centrifugal” term,

GM,

T

®(r,0) = — — %erz sin® @ . (4.1)
These are the so-called Roche equipotentials (named for the French mathematician
Edouard Albert Roche), where ) is the constant angular velocity of the body. The
surface of a rotating star will be confined to equipotential surfaces, and if the polar
(6 = 0) radius r = R, is specified, the potential at the pole can be compared to that
at an arbitrary polar angle 6,

GM, GM.

"R =7 — IPR2sin’ 4 (4.2)

and we obtain the shape of the axisymmetric (¢-independent) stellar surface r =
R.(0) by solving the above cubic equation for R.. Note that the use of a more
self-consistent, e.g., polytropic, mass distribution yields less than a 1% change in
the oblate surface radius derived with the Roche model (see Orlov 1961).

In practice, the angular velocity ) is not always initially known — the actual
velocity at the star’s equator Veq may be specified in its place. There are thus at
least two possible ways to solve for R.(6):

1. Q known: First note that a “critical” or “breakup” angular velocity (..t can
be defined, for which V& has zero magnitude at the equator (6 = 7/2). When
Q = Qcpit, the radius R.(7/2) = R., reaches its maximum possible value of
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Figure 4.1: Equatorial cross sections of Roche equipotential surfaces, plotted for
a uniform distribution of w values between 0 and 1.05, at increments
of 0.05. The dotted curve is a representative post-breakup surface

(w = 1.05).
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Ry = (3/2)R,. When Q < i, one can define the fractional angular velocity
w as /Qcpt, and

GM.  [8GM.
RS, "\ 27RS ’

Q=wQeit =w (4.3)

where 0 < w < 1 for a closed stellar equipotential. The cubic potential
equation (eq. [4.2]) can thus be expressed as

4
ﬁwzms sind—z+1=0, (4.4)
where z = z(w,d) = R.(6)/R,, and solved via trigonometric methods (see

Collins 1963; Collins & Harrington 1966) by

1 in 6
r(w,d) = 3 cos ™+ cos (wsin6) : (4.5)

wsin b 3

Figure 4.1 shows cross sections of these Roche surfaces for a uniformly spaced
distribution of w values between 0 and 1.05, at intervals of 0.05. Note the
“cusp” at the equator of a critically-rotating star, where gravity exactly bal-
ances the centrifugal force, and the outward equatorial flaring of a model star
rotating faster than its breakup velocity.

. Veq known: Since Veq = QR.,, the above cubic potential equation can be
rewritten as

R.
defining w, = Vezq}%p/2GM*. At the equator (R. = Rey,0 = m/2), this equa-

tion becomes

2
w%Rﬁswe—Hjﬁzo, (4.6)
R,

R
1422 g 4.7
w142 (47)
and (R,/Req) = (1 — w,). The variable w, ranges from zero (Veq = 0) to %
(Veq = Qcrit Req), and the general cubic equation becomes
wo(1 — wo)zm?’ sind —z+1=0, (4.8)

and, by comparing with eq. (4.4) above, we find that

w? = 24—71110(1 — 'wo)2 , (4.9)
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and we can use the same trigonometric solution (4.5) to determine the radius
¢ = R./R,. Many authors express a star’s rotation in terms of a fractional
equatorial velocity, i.e., (Veq/Virit), and this ratio is given by

Ve R, -1
T =9 — "2 _ 92cos (m) ) (4.10)
Vcrit Req,crit 3

Both w and T vary monotonically from 0 to 1, but “median” values of T

correspond to more “extreme” values of w (e.g., when T = 0.5, w = 0.6875).
Thus, despite the more fundamental nature of w, the fractional velocity T
more evenly spans the range of oblateness from z., =1 to 1.5.

Note that the Roche gravitational potential, as defined above, does not in-
clude any terms due to radiation pressure or force. As a useful first approximation to
the inclusion of such terms, the mass of the star M, can be replaced by an effective
mass term, M. (1—, ), where, is the electron scattering Eddington factor introduced
in Section 2.2.2. This term is negligible in all but the Wolf-Rayet, O, and earliest
B type stars. For the standard { Puppis model star of Chapter 2, the Eddington
ratio , = 0.351, which results in a critical rotation velocity of Vg5 = 510.4km s *.
This is significantly higher than the observed Veqsini of 210-230km s™', for which
the Roche oblateness is only a ~ 6-7% effect at the equator.

In the star’s atmosphere one can define radial and latitudinal components of
the effective gravity by examining the gradient of the potential ®:

o0® GM., s . g GM., 1 8 5 .,
gr = 5 =0 + Q°rsin“ 0 = RIZ, (—; + ﬁmw sin 0) , (4.11)
16% M, )
96 = —;(Z—G = rsinfcosf = % (28—71:0.12 sin 6 cos 9) : (4.12)

Thus, |g|? = g® = g2 + g2, because the azimuthal component of the effective gravity
(gp) is identically zero from meridional symmetry. Note, of course, that this effective
gravity applies only on the oblate stellar surface, and not in the wind (which does
not rotate rigidly). At the equator (6 = 7/2), the radius at which the effective
gravity vanishes is given by z,-0 = 1.5w™?/%, and for w = 1 this occurs precisely at
the “cusp” on the surface of the critically-rotating star.

The early work of von Zeipel (1924) and Chandrasekhar (1933) showed that
a distorted gaseous star in hydrostatic equilibrium exhibits a change in its net ra-
diative flux which is proportional to the local gravity over its surface. This “gravity
darkening” can be qualitatively understood by assuming the condition of hydrostatic
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equiltbrium in the interior of a star, in which the effective gravity g is derivable from
a scalar potential ®,

VP =pg=—pVe . (4.13)

Because the normals to the surfaces of constant ¢ and constant P are anti-parallel,
the gas pressure P must be constant on equipotential (constant ®) surfaces. Thus
P must be a function of ® only, and the density p can be expressed as

VP(®)|  dP

== 4.14
V| o (4.14)

assuming the density is monotonically stratified. Thus, in these cases, p must be
a function of ® as well. Also, if the atomic abundances (i.e., g in egs. [2.11] and
[2.12]) are considered constant along equipotentials, the temperature 7' must also be
a function of ® only. In radiative equilibrium, the flux carried outward by photons
is given by the conductive term,

160’3
3kp

F=-

VT , (4.15)

where op is the Stefan-Boltzmann constant and & is the Rosseland mean absorption
coefficient (in cm?/g), and is a function of the state variables p, P, and T. Thus,
one can write

aT
VT =—Vo 4.16
7 (4.16)
using the chain rule of differentiation, so that the flux can be concisely expressed as
F = f(®&)Ve = —f(?)g , (4.17)

where f(®)is constant along an equipotential surface. This expression violates strict
radiative equilibrium, in which V - F = 0, and thus some non-rotational fluid flow
must arise to compensate for the resulting local heating and cooling of gas. However,
the time scale of such “meridional circulation” flow (Eddington 1929; Sweet 1950)
1s usually much too long to significantly affect the validity of the gravity darkening
flux derived above.

Slettebak (1949) discussed the variation in effective temperature T over the
surface of rotationally distorted single stars. Since the total luminosity L. of the
star is equivalent to the flux integrated over its surface, its magnitude is

F = O'BT:ﬂ‘(H) = K,. 9(0) ) (418)

with von Zeipel’s constant K, given by the constraint that the total integrated flux
gives L., no matter the degree of rotation, and
— L*

~ §gdS

Ko (4.19)
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where the integral in the denominator is taken over the entire surface of the star.
We implicitly assume that the bolometric luminosity L. remains constant for a
given model star rotating at different rates, but this is not strictly true. Because
the presence of centrifugal forces weakens the effective gravity in the interior, the
central conditions mimic those of a nonrotating star of lower mass. Thus the central
temperature and luminosity are lower in rotating stars, but the maximum effects for
uniform rotation are quite small; L, decreases by only 5-10% at the critical rotation

velocity (Papaloizou & Whelan 1973).

The evaluation of von Zeipel’s constant, though straightforward, involves
a complicated integral. The magnitude of the effective gravity g depends on the
above solution for the latitudinally-dependent Roche radius R.(6), and the element
of surface area is

ds = wsinﬂd&dqﬁ

o ) (4.20)
where 6 is the angle between the local gravity and the radius vector (cos § = —g./g),
and takes into account the fore-shortening of the surface area. Note that, in the
fully radiative case, the effective temperature is dependent on the gravity raised to
the power 0.25. For stars in which convection plays a non-negligible role, however,
the variation of flux with gravity is not so simply parameterized. If the exponent
(sometimes termed b), which is 0.25 in the radiative case, can take on other values,

the gravity darkening is described as

L,
osTeg = (24,,) g%, (4.21)
where the function Y4 is given by
x 446 P2 6 do
Se = fg‘“’ds - 271'/ g R smbdf (4.22)
0 cos b

and the two limiting cases of b = 0 and 0.25 give the surface area of the star (X)
and the surface-weighted gravity (%), respectively. The values of ¥ and ¥; have
been computed via numerical quadrature, and can be fit via least squares as power
series in the fractional angular velocity w,

So ~ 4mRZ|[1+0.19444w’ +0.28053w —

1.9014w° + 6.8298 w® — 9.5002w"® + 4.6631 w'?| (4.23)
¥, =~ 4rGM, [1 —0.19696 w® — 0.094292 w* +

0.33812w°® — 1.3066 w® + 1.8286 w'® — 0.927140.112] : (4.24)

Using only even powers of w gives a much-improved fit over using the same number
of free parameters for even and odd powers together. The relative error in these fits
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is rather small, but it is slightly dependent on w. For w < 0.9, the error is < 1% for
Yo and < 0.2% for ¥;. For all w (0 < w < 1), the error is < 2% for ¥ and < 0.6%
for ¥;.

Lucy (1967) derives b ~ 0.08 for late-type main-sequence stars. Using classi-
cal mixing-length computations (Baker & Temesvary 1966), Lucy utilizes the con-
dition that the gradient of the specific entropy vanishes in a fully convective zone to
set the limits of state variable structure integrations over the stellar surface. This
method is questioned by Anderson & Shu (1977), who find that if flux is carried ex-
clusively by standard mixing-length convection from the deeper layers upward, the
photosphere should eventually radiate it away at a constant rate opT.g, indepen-
dent of the gravitational potential ®. This implies b = 0, and predicts an isothermal
effective temperature distribution for main sequence stars later than spectral type
~ F7, but the exponent b can supposedly range from 0 to 0.25 for spectral types
~ F2 to F7. Earlier type stars, however, exhibit the standard radiative b = 0.25.

Osaki (1970) treats the problem more generally. The exponent b, in a sit-
uation where the radiative and convective contributions to the net flux vary with
depth, can be determined numerically, at least to first order, as an eigenvalue of the
energy transfer equation in the convective envelope. Zhou & Leung (1990) empha-
size the fact that, for systems obeying both hydrostatic and thermal equilibrium,
surfaces of constant temperature and pressure do not necessarily coincide. Thermal
stability will thus cause convective circumfluence between different latitudes, and
Coriolis forces thus play a non-negligible role in the outer layers of such rotating
stars. Clearly the present theoretical understanding of convective gravity darken-
ing is far from complete, but the von Zeipel result for early-type stars with mainly
radiative envelopes is definitely on firmer ground.

4.2 Centrifugal Wind Modulation

The wind from a rapidly rotating star will have different properties at differ-
ent latitudes, and under certain circumstances may vary in all three dimensions and
in time. For the present, however, we confine our models to the equatorial plane,
where rotation has the strongest impact, and where the flow can be constrained to
a surface of constant colatitude, § = 7/2. (See Pizzo 1982 for discussion of similar
approximations in modeling the solar wind.) Thus the 6 (latitudinal) component of
the momentum conservation equation is assumed satisfied in the equatorial plane
by the trivial solution vg(d = 7/2) = 0, i.e., no latitudinal flow into or out of the
computational domain, with all partial derivatives in the 8 direction considered neg-
ligible. In this Section we examine two effects which can modulate and redistribute
the mass flux from a rotating star: the centrifugal decrease in the effective gravity
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(which also causes oblateness) and flux redistribution due to gravity darkening.

4.2.1 Mass Loss Enhancement due to Centrifugal Forces

Following Gerasimovi¢’s (1934) suggestion that the rapid rotation of a star
makes it easier for material to be accelerated from the surface, many models of
“centrifugally enhanced” winds from hot stars have been constructed (Limber 1964;
Friend & Abbott 1986; Pauldrach, Puls, & Kudritzki 1986; Poe 1987; Bjorkman &
Cassinelli 1993). Let us review these models and explore the dynamical consequences
of this enhanced mass loss on Sobolev mCAK winds. The ¢ (azimuthal) component
of the momentum conservation equation is given, in the equatorial plane, by

Ovy . Ovy vg Ovg vy (9_P
ot "Or  rsinf 8¢ r prsinf 9¢ '’

(4.25)

but if we assume a time-steady and azimuthally symmetric wind (i.e., with vector
components such as vy # 0, but all 3/0¢ = 0) only the two terms proportional to

v, survive, and
v, (%+ ﬁ) =0 . (4.26)
Or r

In the deep photosphere, where v, — 0, this equation does not necessarily constrain
Vg, so we assume vg(r = R,) = Veq as a lower boundary condition. In the wind,
where v, # 0, the above equation demands that vy conserve angular momentum,
and that

Veq R. QR?
= = = 4.27
ORCL (2.27)
To generalize to stellar latitudes other than the equator (§ = n/2), one can re-

place 2 — Qsinfd, but keep in mind that two- or three-dimensional effects will
dominate the flow at latitudes other than § = 0 or w/2, and the inclusion of this

one-dimensional centrifugal term then becomes highly suspect (see Chapter 5).

The angular-momentum-conserving rotation of the stellar wind affects the
radial momentum equation (eq. [2.5]) by the term proportional to v}/, and this
can be treated as a contribution to the effective gravity,

GM.(1—,) QR

geﬂ' = - Tz —I_ ’l°3 ‘ (428)

This rotation term drops off more rapidly in radius than gravity, so that even if it
has a strong impact near the star, it can be neglected as r — oco. Because rotation
reduces the effective gravity near the surface, it has the ability to induce a greater
mass flux. This can be estimated using the methods of Section 2.3.2, where we
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assumed a zero sound speed and a critical radius (for finite disk models) extremely
close to the surface (r. ~ R.). Thus, the CAK equation of motion becomes

C
Flzw—l—(l—,—(a)—l_l_awa:O, (4.29)

where © = Q2R3 /G M, = 8z3w?(1—, )/27, and the effective gravity term (1—, —©)
consistently replaces (1—, ) in the critical point conditions (eq. [2.107]) and the CAK
mass loss rate (eq. [2.110]). This approximation for the increase in the mass loss
rate compares well with the results of more complex numerical calculations. Note,
however, that the local mass flux of the equatorial wind, defined by the equation of
continuity (eq. [2.9]), is not equivalent to the total mass loss rate of the star, but is
expressed as a spherically integrated flux (4wr?pv) for convenience.

As the denser wind from a rotating star accelerates outward, the 1/7® term
in the effective gravity eventually dies away, and it reverts to its nonrotating value.
Because the mCAK radiative force is proportional to the inverse of the density,
the acceleration on this higher—M material is smaller, and the terminal velocity ve,
decreases for the more rapidly rotating winds. This can be seen heuristically from the
infinite-radius v, equations in Section 2.3.2, and especially from the approximate
solution, eq. (2.123). Note that here the quantity (1 —, ) is not modified by ©,
because we are at an infinite radius, but C is lower because of the increased mass
loss rate. Poe (1987) and Koninx (1992) noted that for a sufficiently high rotation
velocity the wind becomes so dense that the line force cannot drive it to infinity,
and this corresponds to the imaginary solutions of eq. (2.123) for too-small values

of C.

Figure 4.2 shows the velocity laws v,(r) for numerical mCAK models of the
standard { Puppis star of Chapter 2, rotating in the equatorial plane at various
rotation speeds. For these models, the equatorial radius is kept fixed at R,, and the
effects of gravity darkening on the mass loss rate are ignored. Both the decrease
in ve (as originally modeled by Friend & Abbott 1986) and the termination of the
steady-state wind at a finite radius r; (the “Koninx effect”) are evident. Koninx
(1992) showed that a new singular locus appears at large radii for rotating wind
solutions, and the accelerating mCAK velocity laws intersect it non-tangentially.
Thus, without the opportunity to graze this singular locus, as occurs near the star,
the time-steady wind solutions become non-analytic for r > 7,(Veq). Note also that
as Veq increases, r; decreases, and the critical radius r. increases. For a large enough
rotation speed, then, the two singular loci merge together, and do not even allow a
partially analytic wind.

For the { Puppis standard model star, the rotation velocity where r; drops

1

from infinity to some finite value is Veq ~ 410km s . This value is apparently
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Figure 4.2: Equatorial velocity laws for rotating mCAK models of { Puppis.
Oblateness and gravity darkening are neglected in these models. From
top to bottom, the equatorial rotation velocities are 0, 50, 100, 150,
200, 250, 300, 350, 400, 412.5, 425, 450, 475 km/s. The mCAK critical
points for each model are marked by white circles, and the surface es-
cape velocity and sound speed are marked by dashed and dot-dashed
lines, respectively. Note the cessation of mCAK wind solutions at
finite radii for rotation velocities greater than ~410 km/s.
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set by the drop in v, to a value just slightly greater than Vg, and indeed, for
B-stars, where vy, /Vesc is lower, the rotation speed where r, becomes finite is also
significantly lower. For the { Puppis model, the rotation velocity where r; drops to
equal 7. is Veq ~ 480 km s~'. Numerical VH-1 models for rotation speeds between
410 and 480 km s™! exhibit a well-behaved, time-steady wind for r < 7, and a
discontinuity or “kink” in the radial velocity gradient at » = r,. Above this point,
no accelerating mCAK solutions are available, but a decelerating solution is allowed
which i1s extremely close to the pure gravitational “coasting” which would occur if
the Sobolev line force were shut off completely. As the rotation velocity of the star
increases, the kink-point 7, moves inward, and at some critical value of Veq (still less
than 480km s™') the decelerating post-kink wind will drop to zero velocity at some
r > 1, and the wind will become truly time-dependent. The stalled wind material
may fall back down onto the star, and the system would oscillate quasi-stochastically
as this limit is reached again and again.

4.2.2 Mass Loss Modulation due to Gravity Darkening

Surprisingly, no models of winds from rotating hot stars have incorporated the
effects of gravity darkening. In radiatively-driven winds, the surface redistribution
of the radiative flux should strongly affect the dynamics of the wind. Cranmer &
Owocki (1995, see also Chapter 5) have computed the full vector Sobolev forces from
an oblate and gravity-darkened star, but here we use the accuracy of hindsight to
examine these effects from a more heuristic, but still reasonably accurate standpoint.
As in Section 4.3 below, we present this simplified analysis before the full numerical
results of Chapter 5 to better familiarize the reader with the various effects in
isolation, before seeing them convolved together in the more self-consistent model.

Because of gravity darkening, the continuum radiative flux over the equator
decreases as rotation increases, and this has the possibility of reducing the mass
loss due to radiative driving, and counteracting the above centrifugal mass loss
enhancement. Equations (2.110) and (2.118) can be expressed as a local mass flux
per unit area at the stellar surface (r = R.),

ak!/> (1 —-a)o (1=a)/e " _
S _ e /c (a—1)/a 4.30
mo= pr {(1 + a)vpe l (1+ a)c T Gest ’ (4.30)

and this can be easily extended to the rotating case, where F and g.g vary with
colatitude 6 and rotation rate w. Note that, in general, the line-driving constants

a and k vary with temperature (and thus latitude), but for simplicity we assume
here they remain fixed. In Section 4.2.1, only the reduction of g.g was taken into
account, and it is clear for & < 1 that this enhances m. However, if we assume that
the wind “sees” only the locally gravity-darkened flux F at the radius and colatitude
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where the local mass loss is determined (7. ~ R.), we can use the von Zeipel result

F o ge (for b = 0.25) to find that
(8) o F(6) o gen(d) | (431)

and the pole-to-equator variation of mass flux is independent of a. This implies a
decrease in mass flux at the equator, where g.g decreases, and an increase in mass
flux over the poles due to the brighter flux there, compared to a nonrotating star.

For stars exhibiting gravity darkening with an arbitrary von Zeipel exponent
b, the variation of mass flux from pole to equator may be increasing or decreasing.
This can be seen by expressing the local mass flux as

S 1/a a— e b_bcrit «
m o (szgg%') géﬂ Ve gzlgf )/ , (4.32)

where by = (1 — a)/4. For b < by, the mass loss increases from pole to equator,
as in the non-gravity-darkened case of Section 4.2.1, or b = 0. For b > b.,;;, the mass
loss decreases from pole to equator, as in the fully-radiative case, b = 0.25, presented
above. For b = b.;;, (which is equal to 0.1 for & = 0.6) the mass flux does not vary
with latitude. However, for the early-type O and B stars under consideration here,
we expect that b > b..;;, and that the aforementioned decrease in m from pole to
equator exists for these stars.

These results are qualitatively different from most other models of winds from
rotating stars, which usually predict an equatorial mass loss and density enhance-
ment. Here we find that the bright poles of a rotating hot star eject the densest
“plumes” of the wind, and that the equator is both dark and not as dense. Note,
however, that the total mass loss rate of a rotating star should increase as it spins
faster, because, for b = 0.25,

M= f mr?dQ o KA-o)/= f FrrdQ o« Ki-Vap (4.33)

and if we assume the bolometric luminosity remains unchanged with rotation, the
increase in K,,, or decrease in ¥; with increasing w (see eq. [4.24]) dominates the
star-integrated mass loss rate.

Figure 4.3 shows the variation of the mass flux 7 (normalized to the mass flux
from a spherical nonrotating star) with colatitude 6 and rotation rate w, for both
the pure centrifugal enhancement case of Section 4.2.1 and the von Zeipel (b = 0.25)
case presented here. In Chapter 5 we compute more rigorously the flux that the wind
sees exterior to an oblate and gravity-darkened (uniformly rotating) star, but the
approximate results derived above seem to remain qualitatively valid. Thus, in cases
where von Zeipel gravity darkening is present, the aforementioned loss of steady-
state solutions (the “Koninx effect”) should not occur, and the terminal velocity of
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the wind may even #ncrease over the equator of a rotating star. Of course, if v,
remains proportional to Vesc (and thus to gef), the trend for the terminal velocity
to decrease from pole to equator, and with increasing rotation rate, should remain
unchanged.

4.3 Nonradial Radiative Shear Forces

When a radial wind outflow also rotates in the azimuthal direction, the
Sobolev line resonances no longer depend only on the radial velocity gradient. As
derived in Section 2.2.1, the radiative acceleration depends on the projected gradi-
ent of the projected velocity component along a given line of sight fi, which is given
by fi - V(i1 - v), and radially asymmetric terms due to rotation can both (1) alter
the radial (i.e., mCAK) component of the force, and (2) induce nonradial compo-
nents of this force. Grinin (1978) first derived the form of these nonradial forces
for generalized wind and accretion flows, and MacGregor & Friend (1984) applied
them to hot-star winds with magnetic fields. The results of these analyses implied
that a non-zero azimuthal force can arise in a rotating line-driven wind, but it was
not clear if the magnitude of this force would ever be strong enough to significantly
affect the radial flow, or in what sense (with or against the direction of rotation) it
would act.

Cranmer & Owocki (1995, see also Chapter 5) rederived these general vector
radiative forces from a rotating, oblate, and gravity-darkened hot star, but only
recently have the dynamical implications of nonradial forces on rotating winds been
examined (Owocki, Gayley, & Cranmer 1996). In the spirit of the von Zeipel gravity
darkening analysis in the previous Section, here we isolate the azimuthal contribu-
tion of the Sobolev nonradial force in the equatorial plane, without considering
any other effects of rotation (e.g., oblateness or gravity darkening). Thus, here we
outline a simplified theory of radiative driving in a plane-parallel (i.e., near-star)
environment, and assess the importance of the azimuthal line force which can arise
when horizontal “shearing” velocities are present. The original idea for this analysis,
and several of the key results herein, are due to K. G. Gayley, and a journal paper
on this analysis is currently in preparation.

4.3.1 Plane-Parallel Hydrodynamic Equations

Our goal is to derive analytic relations governing the relative importance of
radial and lateral line-driving forces in stellar winds. Because we are concerned
mainly with the initial acceleration region of the wind, and thus with radi not too
far from the photosphere, we will ignore the sphericity of the system, and work
in a locally Cartesian frame of reference. (The justification for this approximation
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Figure 4.3: Relative mass flux variation with colatitude 6 and rotational angular
velocity w, for the pure centrifugal enhancement of Section 4.2.1 (left
curves), and the von Zeipel gravity darkening modulation of Section
4.2.2 (right curves). Colatitudes from pole (0 degrees) to equator (90
degrees) are plotted at 10 degree intervals.
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will become evident when we determine the radii over which nonradial forces are
important.) We define the vertical coordinate z as analogous to radius r, or height
(r — R.), and we define the horizontal coordinate z as analogous to the azimuthal
displacement (r¢sin 8), and take specifically § = 7/2, or motion in the equatorial
plane.

Defining the z and z velocities as w and w, respectively, the equation of mass
continuity can be written

9 8 o, .
a1 T agPe) T 5 (pw) =0, (4.34)

which reduces to the particularly simple form

Ow Op

when we assume time-steady and laterally-symmetric solutions. The assumption of
lateral symmetry is equivalent to that of azimuthal symmetry in a rotating spherical
system. The mass continuity equation can be integrated to find

pw = myg , (4.36)

which is a planar mass flux in the z direction. This is related to the more common
spherical “mass loss rate,” M = 4wr?my.

The z and z components of the equation of momentum conservation are

Ou Ou Ou oP

hathnd hathnd - - 27 rad
P ot + = Tow 0z Oz P (4:37)
Ow Ow Ow oP rad
Par + PUG + e Y +prg. (4.38)

rad rad

where g, ¢.%¢, and g}
in the z and z directions, respectively. Assuming the above conditions of time-

represent the gravitational and radiative acceleration terms

independence and lateral symmetry, together with an isothermal equation of state
(P = pa?), these equations simplify to

au rad
az aw rad
(“’—;) 5, = %9 (4.40)

where eq. (4.35) has been used to eliminate the density gradient in favor of the
velocity gradient. The radiative acceleration terms are written in terms of integrals
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over the stellar “disk,” which in this planar (near-star) limit expands to fill an entire
hemisphere. Following the geometrical notation of Cranmer & Owocki (1995),

/2 Ove|™  8v|*\ L, ., ..
gt = 2 [0 / ( L+ )ﬂdu d¢ (4.41)
(9’04 81)1“

REgE

g = Clw*= /W/Z/ ( ) V1 —p? dp sing' dg’,(4.42)

with the constant C defined in the plane-parallel limit as

C

GM*’k( L )a (4.43)

R:

Mo OcVth

and the line-of-sight velocity gradient, fi - V(i - v), is written here as
Ovy Ow Ou
— ] = JV1I—p?sing | — ] . 4.44
(az)i g ((92) £ WYLt sing (82) (4.44)

4.3.2 Zero-Order Solutions

First, consider solutions to the equations of motion without any radiative
acceleration terms. For a nontrivial wind solution (w # 0), eq. (4.39) implies that the
horizontal velocity u must be constant in z. The z-momentum equation, eq. (4.40),
similarly implies the implicit Parker-like solution for w(z):

1
a’ln (%) —3 ('w2 — 'w(z,) =gz , (4.45)

with the assumptions that g is constant in the near-star region of interest, and that
w(z = 0) = wo. In the supersonic (w > a) limit, the sound-speed-dependent term
in the equation of motion can be neglected, and

w(z) = Jwi —2gz . (4.46)

In the extremely subsonic (w < a) limit, the inertial term in the equation of motion,
proportional to w(Ow/0z), can be neglected, and

w(z) ~ wo exp(z/H) , (4.47)
where the isothermal scale height H = a?/g.

The standard analysis of radiatively-driven stellar winds usually assumes that

rad :

the horizontal radiative force g5,* is negligible when compared to the radial radiative
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rad
z

O0u/0z = 0. Note that the horizontal velocity itself (u) does not appear in any of
the equations of motion, so it can be set to an arbitrary constant. Although we

force g7**. In our plane-parallel approximation, this is equivalent to assuming that

will eventually be concerned with “steep” shearing solutions (i.e., large values of
|0u/0z|), the behavior of solutions in the limit of small horizontal gradients will be
instructive to decide whether large solutions are even possible (see Figure 4.4).

The radial radiative force, in the limit of a vanishing horizontal velocity
gradient, can be reduced to the particularly simple form:

w|™ 2 /2 1 nee g1 og 1
g = C ‘wa— —/ / 2% p' dp' dop (4.48)
z| mJep=0Ju=0
dwl® 1
= — . 4.4
¢ ‘w 0z (1 + a) (4.49)

Using this, one can write the CAK equation of motion (eq. [4.40]) as

a? C
Fr=(1—-— ——y|* =0 4.50
] ( W) Y TI T Tl , (4.50)
with y = w(Ow/0z). Since the CAK critical point is often seen to occur in the
supersonic portion of the wind, we can analyze this equation in the limit of zero-
sound-speed, and write the singularity condition,
(9F1 OéC

= 1— -1 _ 4.51

and these two equations can be solved uniquely for C, which is related to the mass
loss rate, and y., the critical value of the radial velocity gradient. Thus,

a o« 1+«
co(i2) e aw

In the region of z-values of interest, y = y. is constant, and the definition of y can
be integrated to find

a
~ 242 4.53
w(e) ~ o +2 (12 ) g2 (4.53
which is very similar to the above eq. (4.46), with the radiative acceleration counter-
acting gravity. Thus, in the spirit of the approximations in egs. (4.46) and (4.47), we

can fit the entire run of w(z) from subsonic to supersonic velocities by the implicit

solution of )
) w —a N
a’ln (_a) + o ('w —a ) =gz , (4.54)

where we have set wg = a.
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4.3.3 Taylor Series Shear Analysis

The horizontal radiative acceleration is identically zero in the limit u/0z =
0, but it will be instructive to determine the quantity dg7®?/8(du/dz), which is the
slope of this force, in the limit of small horizontal velocity gradients. Figure 4.4
shows a relatively strong and weak horizontal radiative acceleration, plotted along
with the inertial term (the left side of eq. [4.39]), both versus Ou/0z. When the
slope of g7°? — in the vicinity of the origin — is smaller than that of the straight
line, the only solution available is the trivial one, du/0z = 0. However, when the
slope of g% is larger than that of the straight hne other “steep” shearmg solutions

become available. It is our goal to determine When these solutions are allowed in a

rad :

line-driven wind.

The horizontal equation of momentum conservation can be written in terms

of a new variable ¥ = (0u/0z)/(0w/0z), as

— Oyl = / / (Fy — F_) /1 — u? dy' sind' dg' (4.55)

where here the line-of-sight velocity gradient terms have been scaled to

Fy = |p?+ 9 u'\/1 — p? sin ¢’ (4.56)
Expanding to first order about ¥ = 0,
OF.
Fe(®) = Fo(0) + ¥ —=) + - (4.57)
Y /g,

~ p? £ alp? /1 — p? sing’ . (4.58)

The horizontal momentum conservation equation becomes, upon substituting y = y.
from above,

4a¥
U = Oy el s1n2¢ ¢’ /’ 0(#/2a—1 _'u/2a+1) dy! (4.59)

T Je'=0

- (1::&) (2(1\104)) B % (460

which implies that, to obtain steep solutions in Figure 4.4, we require a < (1/2).

This is a stringent limit which applies in the supersonic wind, and for realistic values
of a, no shear solutions should be possible in the majority of the wind.

Note that the above analysis assumed a radial velocity gradient y = y. as
given by the supersonic critical point analysis. In the subsonic region of the wind,
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Figure 4.4: Horizontal radiative acceleration (solid lines) and inertial acceleration
w Ou/0z (dashed line), plotted as a function of the vertical gradient of
the horizontal velocity. A weak horizontal acceleration only satisfies
the equations of motion for du/dz = 0, but a strong horizontal accel-
eration also has “steep” shear solutions (filled circles) for large values

of |Ou/0z|.
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this does not apply, and we can assume the radial velocity law given by eq. (4.47),
implying that

2 2
= % = %exp@z/ﬂ) : (4.61)

However, let us still assume that the mass-loss constant C is still given by the
supersonic critical point analysis, since the mass flux is thought to be determined
at that point. If we define wy = a, then, for negative z-values,

v C|y6|a_1

= ¥ (1 fa)l_a %exp [—%Z(l — a)] (4.63)

6T = R an

For example, if a = 0.5, the condition for steep solutions is simply w < a, but

Y

if @ = 0.7, the condition reduces to w  0.872a. Clearly if w = a the subsonic
approximation breaks down, but these results conclusively show that extremely
subsonic winds have a steep shear solution available for u/0z. Unfortunately the
magnitudes of all radiative forces are small in the deeply subsonic wind, and it is
not clear how important these solutions will be at this depth.

4.3.4 Higher Order Shear Estimates

The above first-order Taylor series analysis tells us only if steep shearing solu-

tions are or are not present. By going to higher order, we can model the “concavity”

rad
©

of g-*¢(¥) sufficiently well to actually solve for the steep value of ¥. To simplify
matters somewhat, note that the z-component of the radiative acceleration, g5*¢(¥)
is an even function in powers of ¥, and the z-component is an odd function in pow-
ers of W. Thus, the scaled line-of-sight velocity gradient Fy (eq. [4.56]) needs to be
expanded at least to third order, to take into account the next highest order terms

in both ¢g7°¢ and g7°%:

x z °

oF 1, (8%F 1_, (0°F
Fi(¥) = Fi(0)+ ¥ (3—‘;)0 +50 ( aqu)o 5 ( 3‘1’:)0 4o (4.65)

p?* £ a®p** /1 — p'? sin ¢’ (4.66)

1
+ 504(04 — 1)W2p?*2(1 — p'?) sin® ¢’ (4.67)

Q

1
+ 604(04 — D)o — 2)W3p2273(1 — p?)*/2 sin ¢’ . (4.68)
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Performing the angle integrations yields, for both components of the radiative ac-

celeration,
C 1
rad o 2
N o—— 1—-9%(1l -« 4.
9. 1 a|y| [ 4 ( )] (4.69)
C v 1
rad o 2
R — ) [1—==-P%(2— . 4.
9z 1 i (2) [ 4 ( 0‘)] (4.70)

Note that the critical-point solution to the vertical momentum conservation
equation implies

1+« 1
a—1 __
Clyel™™ = ( a )1—\112(1—04)/4 !

with y. defined as before, and the horizontal momentum conservation equation be-
comes (compare to eq. [4.62])

(4.71)

v = —

(4.72)

U [1-9%2 -«
= 5 [1_\112(1_&)/4] (a,w) (4.73)

generalizing the notation defined for the subsonic wind in eq. (4.64). This last
equation can be solved for the steep (nontrivial) solution,

T = J 4(¢ — 2a) (4.74)

202 — (2+Qa+2¢ "’

where ( = 1 if we assume y = y. in the supersonic wind. Figure 4.5 shows solutions
for w(z), from eq. (4.54), and (0u/0z), as given above, for the specified (Ow/0z) and
various values of a. Note that there is a relatively small and finite range of z-values
for which there exists a significant horizontal shear for realistic (a > 0.5) CAK
winds, and the plane-parallel approximation in this Section is reasonably justified.

4.3.5 Stability of Shear Flows

The steep shear solutions derived above, which emerge from the photosphere
with appreciable vertical gradients in both the u and w velocities, may or may not be
stable to small perturbations. Let us review the conditions necessary for horizontal
velocities to cause a convective instability in a plane-parallel atmosphere (see, e.g.,
Moss & Smith 1981). Consider a static and stratified medium which is convectively
stable, 1.e., with a Brunt-Vaisala oscillation frequency,

R
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Figure 4.5: Upper curves: vertical velocity laws w(z) for different mCAK «
exponents, plotted versus height z, which is taken to be zero at the
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in u can be estimated by inspection to be limited only to a few sound
speeds.



92

g

= ;(7—1) >0, (4.76)
where here the sound speed a is the adiabatic sound speed (yP/p)'/?, and eq. (4.76)
is the Brunt-Vaisila frequency for an isothermal stratified atmosphere (see Chapter
7). The average force per unit volume felt by an oscillating parcel of gas, during a
complete cycle of displacement, is approximately equal to

1
Af ~ wBVpAz ) (4.77)

where the blob moves a mean distance Az in one half-period of motion. The work
(per unit mass) required to interchange two similar blobs, initially at heights z and
z + Az, is given by
2A
AW =~ —fAz ~ wyy (Az) . (4.78)
p

If we consider the possibility that shear forces can provide the work necessary
to overturn these otherwise convectively stable parcels, we can express this work in
terms of the kinetic energy stored in the relative horizontal motion of different layers.
Assuming our two “stacked” blobs have horizontal speeds w and u + Au, and also
assuming that their mizing eventually yields a mean speed u + Awu/2, the difference
in kinetic energies (per unit mass) between the initial and final states is

AK = 12+1( + Au)? 12( +1A)2 (4.79)
1
= (), (4.80)

indicating that the addition of shear in any horizontal direction produces extra
positive kinetic energy which can drive a Kelvin-Helmholz instability. However, in
our stratified medium, we only have instability if this kinetic energy outweighs the
work needed to disrupt the convective stability, or

AK > AW . (4.81)
This condition can be written in terms of the dimensionless Richardson number,
Ri = AW _ (A2 why (4.82)
4AK (Au)? (Ou/0z)?

and the medium is stable when Ri > (1/4) and unstable when Ri < (1/4). For an
1sothermal atmosphere, we can derive a critical value of the vertical gradient of the
horizontal velocity, using Ri = 1/4, and

() -0r=mG) e
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for v = 5/3. Note from Figure 4.5 that the magnitude of the “steep” shear solutions
of Ou/0z are well below this critical value, implying their stability to shear-induced
convective mixing.

The present plane-parallel analysis does not distinguish between steep spin-up
azimuthal velocities (Ou/0z > 0) and steep spin-down azimuthal velocities (Ou/0z <
0). This degeneracy is lifted in the fully three-dimensional models in spherical
coordinates presented in Chapter 5. A test point in the wind over a spherical
star sees a distinct difference between the approaching and receding limbs of the
rotating stellar disk, and the different Doppler shifts of stellar photons cause a
definite bias toward azimuthal forces in the opposite direction to the rotation. Spin-
down solutions are almost always favored in winds which rotate slower than the
rigid body of the star, and this rapid decrease in v,(r) is able to rob the wind of a
fraction of its angular momentum.



