
Chapter 3

SYNTHETIC OBSERVATIONAL DIAGNOSTICS

Just remember this, my girl,

When you look up in the sky

You can see the stars

And still not see the light,

That's right.

Jack Tempchin & Robb Strandlund, Already Gone

In order to compare theoretical models with observations, one must be able
to compute the emergent photon distribution from these models and transform such
noise-free \data" into a form where a one-to-one comparison with actual data is pos-
sible. The presence of hot-star winds has been inferred from radio, infrared, visible,
ultraviolet and X-ray observations, but here we concentrate mainly on ultraviolet
wavelengths, which are the most luminous for early-type stars. The major goal of
this Chapter is to compute the shapes and strengths of P Cygni type spectral lines
from an expanding envelope around a star (Section 3.1). Also, in anticipation of
subsequent Chapters dealing with highly structured and inhomogeneous winds, a
simple form of the continuum polarization from non-spherical and optically thin
circumstellar gas distributions is derived (Section 3.2).

3.1 P Cygni Spectral Line Formation

3.1.1 The Source Function of the Radiation Field

Although the source function S� was not seen to have a crucial impact on
the derivation of the radiation force in Section 2.2, it will be very important when
calculating the shapes and strengths of spectral lines formed in the stellar wind.
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Let us then evaluate the source function using the \escape probability" formalism
of Sobolev (1957) and Castor (1970).

Consider the formal solution to the equation of radiative transfer, given by
eq. (2.25),

I�(��) =
Z ��

0
S�(t�)e

�(���t� )dt� + Icore� e��� : (3:1)

The optical depth is given in the Sobolev approximation by

��(r) = �o(r)�(x; r) ; (3:2)

where the Sobolev optical depth �o and the integrating factor �(x; r) are de�ned and
discussed above in Section 2.2. Note, however, that the same approximations which
allowed �o to be taken outside the depth integral also allow the source function S�
to be considered roughly constant over a Sobolev length LSob. Thus,

I�(��) = S�(��)
h
1 � e���

i
+ Icore� e��� : (3:3)

Although the frequency dependence of the intensity and emergent 
ux will
eventually be required to compute line pro�les, it is the frequency averaged intensity
which is needed for the source function to be found. The thermal Doppler motions
in the gas, which are dominant in the Sobolev approach, tend to produce complete
frequency distribution in the inertial frame. The source function that appears in the
radiative transfer will thus be a quantity that is averaged over the line's frequency
domain:

�S(r) �
Z +1

�1

�(x)S�(r) dx (3:4)

(here x is the dimensionless Doppler frequency de�ned in eq. [2.20]), and the formal
solution for the intensity can be similarly averaged over the line,

�I = �S

"
1 �

 
1 � e��o

�o

!#
+ �Icore

 
1 � e��o

�o

!
; (3:5)

using the analytic integral evaluated in eq. (2.38). The quantity in parentheses

p(n̂) =
1� e��o

�o
(3:6)

can be considered the probability (dependent on the angle n̂ in the Sobolev optical
depth) of escape from the circumstellar region by a locally-scattered line photon.

In addition to the average over line frequency, consider an average (i.e., zeroth
moment) of the formal intensity solution over solid angle:

4� �J =
I

�Id
 = �S
�
4� �

I
p(n̂) d


�
+
I

�Icore(n̂) p(n̂) d
 : (3:7)
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This expression allows one to solve explicitly for the angle and frequency independent
source function. If isotropic scattering and LTE are assumed, then

�S = ��B�(T ) + (1� ��) �J ; (3:8)

where �� is a line-averaged photon destruction probability per scattering, and the
Planck function B�(T ) is considered slowly-varying over the line. Note that the
probability �� (which ranges between 0 and 1) is sometimes replaced by ��0, the ratio
of collisional to radiative deexcitation, where ��0 = ��=(1 � ��) ranges between 0 and
+1, and is proportional to the gas density:

��0 = �0o

 
�

�o

!
; �� =

�o(�=�o)

(1� �o) + �o(�=�o)
; (3:9)

where �o = �0o=(1 + �0o) is a convenient density-independent probability. Solving the
above equation for �J , then, gives the source function in terms of intensity moments
and escape probabilities:

�S(r) =
4���B�(T ) + (1 � ��)

H �Icore(n̂) p(n̂) d

4���+ (1 � ��)

H
p(n̂) d


: (3:10)

This general expression is often simpli�ed in practice. Most spectral lines
observed in winds are pure-scattering resonance lines, so �� � 0. Also, the stellar
\core" intensity can be expressed as the product of a constant continuum-like term
and a limb-darkening function,

�Icore(n̂) � ICD(n̂) ; (3:11)

and under these two approximations,

�S � IC
H
D(n̂) p(n̂) d
H
p(n̂) d


� IC�c
�

; (3:12)

where the angle-averaged escape probability is denoted by �, and the probability
of a photon escaping the local region and then intercepting the core (the \core
penetration probability") is denoted by �c. If one assumes a perfectly isotropic
photon distribution, one can approximate �c � �W , where W is the standard
dilution factor (probability of a random ray n̂ intercepting the core).

This escape probability formalism for �S is a valuable tool, but it has its lim-
its. Recall that the Sobolev approximation requires the velocity to be monotonically
varying along all rays pointing away from the star. This, however, is not guaranteed
in the multidimensional and time-dependent wind models presented in subsequent
Chapters. Winds with nonmonotonic velocity �elds have nonlocal line forces, since
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multiple resonance surfaces can create additional attenuation of the stellar 
ux (Ry-
bicki & Hummer 1978; Puls, Owocki, & Fullerton 1993, hereafter POF). Multiple
resonances can also occur in the presence of line multiplets, but the Sobolev escape
probability formalism can be easily modi�ed in this case (see, e.g., Olson 1982).
POF compare the use of the local Sobolev method with a self-consistent multiple-
resonance technique in structured wind models, and �nd signi�cant disagreement
in the resulting line pro�les. However, our hydrodynamical models of large-scale
inhomogeneities in winds are much less structured than the one-dimensional insta-
bility (small-scale shock) models used by POF, with far fewer zones of nonmonotonic
velocity variation in the entire wind. We thus use the escape probability approxi-
mation for �S in all theoretical line pro�les in this work, and model the presence of
small-scale shocks by microturbulence (see Section 3.1.3, below).

3.1.2 The Emergent Intensity and Flux

The radiative 
ux from a spherical star is a purely radial vector with magni-
tude

F� =
Z 2�

�0=0

Z 1

�0=��
I�(�

0; �0)�0 d�0 d�0 ; (3:13)

where the angles �0 = cos�1 �0 and �0 are measured from a position in the wind a
distance r from the origin, and

�� =

s
1 � R�

r
(3:14)

de�nes the stellar limb from this position. The local cylindrical coordinate system
(p0; �0; z0) is useful to de�ne, with

p0 = r sin �0 = r
q
1� �02 (3.15)

z0 = r cos �0 = r�0 ; (3.16)

and the 
ux integral, for an observer along the positive z0-axis at an in�nite distance
from the origin (r!1), can be rewritten as

F� =
1

r2

Z 2�

�0=0

Z R�

p0=0
I�(p

0; �0; z0!1) p0 dp0 d�0 : (3:17)

Line pro�les are frequently written in terms of a residual 
ux R� � FL
� =FC

� , where
the line 
ux FL

� uses the full formal solution for I�, and the continuum 
ux FC
� uses

the unattenuated stellar intensity Icore� .

The 
ux from a spectral line formed primarily in the wind, however, involves
more than just an integration over the stellar surface. Formally, the integral over
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p0 must range from zero to in�nity, but in practice we set a maximum radius Rmax

in all models, beyond which the density and emissivity are negligibly small. Castor
(1970), Rybicki & Hummer (1978), and Castor & Lamers (1979) computed P Cygni
type line pro�les using the Sobolev approximation and a parameterized wind model
to compute the intensity and optical depth. The Sobolev intensity in the line is
given by eq. (3.3), and for an intrinsic line pro�le which is much thinner than the
expected wind-broadened pro�le (i.e., for vth � v1), the integrated pro�le function
is a step function which jumps at the resonance point,

�(x; r) =

8><
>:

0; x < n̂ � v=vth
1; x � n̂ � v=vth ;

(3:18)

where here n̂ = êz0 because the observer is along the +z0 axis.

Note that, since the stellar disk occults the wind for which 0 � p0 � R� and
z0 < 0, there will be rays which intercept the star that will have line frequencies
without observable resonances. Taking this into account, and assuming that v(r =
R�) = 0 on the stellar surface, the Sobolev line intensity is given by

I�(p
0; �0; z0!1) =

8>>>>><
>>>>>:

Icore� ; 0 � p0 � R� ; x < 0

Icore� e��
�

o + �S(1 � e���o ) ; 0 � p0 � R� ; x � 0

�S(1 � e���o ) ; p0 > R� ;

(3:19)

and � �o is the Sobolev optical depth (eq. [2.35]) evaluated at the resonance point
where x = n̂ � v=vth. Castor & Lamers (1979) take into account the underlying
photospheric line absorption pro�le in Icore� , and �nd that it can signi�cantly a�ect
the wind pro�le shape where absorption is appreciable. The major e�ect is a weak-
ening of the emission component of the overall line, and Castor & Lamers provide
an approximate method of estimating this reduction:

R� � qE� +R�

�(1�A�) ; (3:20)

where R�

� is the photospheric line residual 
ux, (1 � A�) and E� are the direct
(\absorption," from Icore� ) and di�use (\emission," from �S) components of the wind
residual 
ux, and q is a fractional photospheric dimunition factor de�ned as

q � vth
v1

Z v1=vth

x=0
R�

�(x) dx ; (3:21)

which approaches unity in the limit of no photospheric absorption. Castor & Lamers
(1979) �nd that this dimunition of the emission component of a P Cygni line is the
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dominant e�ect of photospheric absorption, and �nd much better agreement between
a self-consistent solution (with the absorption in Icore� ) and eq. (3.20) than by using
the simpler additive approximation of R� � E� +R�

� �A� .

The sign convention used above for the line velocity denotes x > 0 as veloc-
ities blueshifted toward the observer, and x < 0 as velocities redshifted away from
the observer. This is opposite to the sign convention often used when dealing with
observational data. The above form for the intensity (eq. [3.19]) reveals the existence
of the blueshifted absorption trough in P Cygni lines, since blueshifted frequencies
experience extra attenuation (in the Icore� e��

�

o term) due to line resonances directly
in front of the stellar disk. The emission from the di�use wind-scattered radiation
(in the �S terms) is almost symmetric about line center because it is dominated
by the large volume p0 > R�, but occultation e�ects give the red side slightly less
emission.

Despite the qualitative success of using the Sobolev approximation to com-
pute line pro�les from hot-star winds (e.g., Castor & Lamers 1979), there exist
signi�cant quantitative di�erences between theoretical and observed P Cygni type
line pro�les. Most notably, strong saturated wind lines, e.g., the C iv ��1548, 1551�A
doublet, have broad (hundreds of km s�1 wide) blueshifted \black troughs," while
pure Sobolev theoretical pro�les dip down to zero intensity only at one point: the
terminal velocity. Lucy (1982, 1983) suggested that this broadening can be caused
by multiple scattering between nonmonotonic velocity features in a wind, and this
clearly indicates that Sobolev theory is inadequate to treat the radiative transfer in
such lines. An alternative and very accurate method of generating wind pro�les is
to solve the equation of radiative transfer in the comoving frame (CF) of the wind
(Mihalas, Kunasz, & Hummer 1975; Hamann 1981). Computationally, however, this
method is signi�cantly more expensive than the Sobolev approximation, and thus
is impractical for use in interactive spectral analysis.

Lamers, Cerruti-Sola, & Perinotto (1987) have introduced an e�cient tech-
nique for computing wind line pro�les with an accuracy intermediate between the
Sobolev approximation and the CF method. Their \Sobolev with Exact Integration"
(SEI) algorithm uses the Sobolev escape probability form of the source function �S,
but does not assume the simple \step function" solution to the equation of radiative
transfer (i.e., it uses eq. [3.1] instead of eq. [3.3]). Hamann (1981) showed that most
of the errors incurred in the pure Sobolev approximation come from this integration
and not from the source function itself. Thus, the SEI intensity is given by

I�(z
0 !1) =

8><
>:
R+1
z�

h
�L �� (x� n̂ � v=vth) �S e���

i
dz0 + Icore� e��� ; p0 � R�R+1

�1

h
�L �� (x� n̂ � v=vth) �S e���

i
dz0 ; p0 > R�

(3:22)
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where z� = (R2
�
�p02)1=2 is the z0 coordinate of the stellar surface. The optical depth

must be integrated together with the intensity, and is given by

��(z
0) =

Z +1

z0
�L ��

 
x� n̂ � v

vth

!
dz00 : (3:23)

Note, however, that in the absence of the nonmonotonic velocities which generate
black troughs, the Sobolev, SEI, and CF methods all give virtually identical results,
and it is the need to model the complex observations which demands moving beyond
pure Sobolev line pro�les.

We utilize the SEI method in all models presented here, and we perform the
\exact integration" for the line 
ux using the cylindrical (p0; �0; z0) coordinate system
with the observer oriented along the positive z0-axis. The equation of radiative
transfer is evaluated in di�erential form along rays parallel to this axis, and along
each ray the optical depth and speci�c intensity are integrated using second order
implicit Euler di�erencing. The resulting emergent intensities at the outer boundary
of the computational grid are then integrated by nested Romberg quadrature in p0

and �0 to form the 
ux, and this process is repeated for each frequency point in the
total line pro�le.

3.1.3 Line Broadening and Opacity

The detailed atomic physics of the line transition to be modeled enters the
problem in the pro�le function �(x) and the line absorption coe�cient �L. For
simplicity, we assume a Doppler-broadened Gaussian line-pro�le function of the
form

�(x) =
exp(�x2)p

�
; (3:24)

but for lines with appreciable collisional damping, the normalized Voigt function

�(x; a) =
a

�3=2

Z +1

�1

exp(�y2) dy
a2 + (x� y)2 (3:25)

can be used, where the Voigt parameter a is the ratio of the collisional to the Doppler
broadening width,

a =
c�

4��ovth
; (3:26)

and � is the combined damping rate for natural (radiation) and collisional broad-
ening (see Mihalas 1978).

The pro�le-integrated opacity or strength of a spectral line is given by

�L(r) � �L(r)�(r) =
�e2

mec

1

��D
(gf)`u

 
n`
g`
� nu
gu

!
; (3:27)
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where u and ` denote the upper and lower levels of the atomic transition, f is the
oscillator strength, and g is the multiplicity of the level. Because of the non-LTE
conditions typical in extended atmospheres (and because most of the lines to be
modeled are resonance lines), we can assume n` � nu and write

(gf)`u

 
n`
g`
� nu
gu

!
� f`u n` = f`u qiAX

�

mH
; (3:28)

where qi is the fraction of the element in the ith ionization state and A is its elemental
abundance (by number) relative to hydrogen. The primary radial variation in �L,
then, comes from the ionization fraction qi and the density �, and we can write the
line absorption coe�cient as

�L(r) =

"
�e2

mec

f`uAX

mH��D

#
qi(r) � �0

"
qi(r)

q0

#
; (3:29)

where q0 is the ionization fraction at a speci�ed radius (typically taken where vr �
v1=2).

Following the notation of POF, let us parameterize the constant coe�cient
�0 by de�ning a dimensionless line strength

kL �
 

_Mvth
4�R�v21

!
�0 ; (3:30)

where v1 and _M are taken from a simple one-dimensional steady-state wind model.
POF assume �L = �0, which is valid for some lines of interest in the dominant ion-
ization stage of the wind. However, Bjorkman et al. (1994) discuss various relevant
parameterizations for the ionization fraction qi(r), and use a combined scaling law
of the form

qi(r) /
�
�

W

�
��i �R�

r

�

; (3:31)

where the �rst term represents the ionization fraction in a case where the ionization
rates are dominated by photoionization and radiative recombination (see Section
2.2.5), and �i is the di�erence between the ion stage i and the dominant stage. The
second term above results from an empirical opacity �t used by Lamers et al. (1987)
and others to model weak lines which lack sharp \edges" in the blueshifted P Cygni
absorption troughs.

In order to produce line pro�les that best resemble the observations, one ad-
ditional assumption is often included in the theoretical description of the line pro�le
strength and shape: the presence of \turbulent" velocities. On the smallest scales,
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microturbulent velocities can be convolved with the thermal Maxwellian motions of
the gas, and an e�ective Doppler width of the form

��D =
�o
c

q
v2th + v2

turb
(3:32)

can be assumed. Although most implementations assume a constant microturbulent
velocity of the order 50{200 km s�1, better line pro�le �ts have been obtained by
assuming that vturb varies in proportion to the mean wind velocity vr(r) (Haser
et al. 1995). Also, for a large sample of B stars, Denissenkov (1994) found that
the photospheric microturbulent velocity correlates well with the projected rotation
velocity Veq sin i, and this may be useful for empirical models of wind lines from
rapidly rotating Be stars.

POF found that a better physical explanation for the e�ects of \microturbu-
lent broadening" is the presence of stochastic small-scale instability shocks in line-
driven winds. Following Lucy's (1982, 1983) conjecture that multiply nonmonotonic
shocked velocity laws can explain the broadened black troughs in saturated P Cygni
resonance lines, POF computed the nonlocal multiple-resonance source function for
a highly structured unstable wind model, and indeed found similar broadening to
that produced by ad-hoc microturbulence. However, note that multiple scattering
and microturbulence produce black troughs for di�erent reasons. When a non-
monotonic velocity structure is present, the increased back-scattering from multiple
resonances creates reduced emission on the blue side of the line. When microtur-
bulent broadening is present, though, it produces a greater velocity dispersion in
the single uncoupled resonance zones, separating the redshifted emission from the
blueshifted absorption and resulting in a widened line trough. Despite these dif-
ferences the computed line pro�les are morphologically similar, and we apply the
simpler microturbulence picture in the line pro�les computed in this dissertation.

3.1.4 Examples of SEI P Cygni Line Pro�les

We have developed a fully multidimensional code which implements the
Sobolev and SEI methods of constructing P Cygni line pro�les from expanding
winds. Here we present examples of such idealized spectral lines using the one-
dimensional � Puppis wind model discussed above in Chapter 2. The radial velocity
and density, as computed numerically by VH-1, are read into the SEI code, and
spherical symmetry is assumed in this case. The \standard" line pro�le parameters
we choose are: kL = 1 (a moderate unsaturated line), �o = 0 (a pure-scattering
resonance line), vturb = 100 km s�1 (as is required observationally to approximate
small-scale instability structure), and �i = 
 = 0 (for a line in the dominant ion-
ization stage of the wind; e.g., as in POF).
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Figures 3.1{3.4 show the computed SEI line pro�les, plotted versus Doppler
line velocity in the star's frame, for variations of the above standard parameters.
Figure 3.1 varies the line strength kL by two orders of magnitude above and below
the standard value of unity, while keeping the other parameters �xed. Note that for
kL �> 10 the line is fully saturated, and any extra opacity has a negligible impact
on the pro�le shape. Also, the deepest blueshifted absorption for weak lines occurs
several hundred km s�1 below the maximum model velocity (here, �2800 km s�1),
which implies that observational estimates of v1 may be slightly underestimated
if unsaturated P Cygni absorption troughs are used to determine them. Figure 3.2
shows the standard kL = 1 line, but varies the arti�cial microturbulent velocity.
The sharp pro�le corresponding to vturb = 0km s�1 is virtually identical to the line
pro�le generated by the pure Sobolev method discussed above (see also Lamers et
al. 1987). Figure 3.3 also varies vturb, but for a strong saturated P Cygni line with
kL = 100; note the black troughs generated by the increased velocity dispersion.

Following the initial models of Castor (1970), which implied that strong Wolf-
Rayet emission lines may be merely the result of thermal emission in an expanding
wind, we have varied the collisional probability �� according to eq. (3.9). Figure 3.4
shows the result of varying the constant �o, and allowing the true ratio of collisional
to radiative deexcitations (��0) to remain proportional to the wind density. We choose
the normalizing constant �o in eq. (3.9) to be the maximum (base) density of the
model, which implies that rather large values of �o (close to unity) are required to
produce signi�cant emission in the majority of the accelerating wind. Note, however,
that many strong Wolf-Rayet lines are recombination, not resonant, transitions, and
the line absorption coe�cient �L depends on the density of the wind because of the
need to populate the lower level. The actual line pro�les are thus roughly similar to
those using an ionization law of the form eq. (3.31), with 
 � 2. The pro�le shapes,
then, are \damped out" at high velocities, and often do not show blueshifted P Cygni
absorption (see, e.g., Bjorkman et al. 1994).

3.2 Continuum Polarization

Well before Maxwell's theoretical exposition of classical electromagnetism in
1864, the nature of light propagating via transverse waves was generally accepted
from empirical evidence. Stokes (1852) showed that any collection of such waves
can be characterized by four independent parameters which describe its intensity,
geometry, and phase distribution; i.e., the polarization state of the wave. If the
intensity I of a light beam is measured with respect to a given set of axes, its
projected components in two perpendicular planes (their normals also perpendicular
to the direction of propagation) can be denoted I` and Ir. The addition of two or
more electric �eld vectors of the radiation components will, in the most general case,
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Figure 3.1: P Cygni line pro�les, generated by the SEI method, for the standard �
Puppis model wind. This �gure varies the line strength by two orders
of magnitude above and below the standard, moderately unsaturated
value.
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Figure 3.2: P Cygni line pro�les, generated by the SEI method, for the standard
� Puppis model wind. This �gure varies the arti�cial microturbulent
velocity above and below the standard value.
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Figure 3.3: P Cygni line pro�les, generated by the SEI method, for a strong satu-

rated line with 100 times the line strength of the standard model, but
using all other standard � Puppis parameters. This �gure varies the
arti�cial microturbulent velocity above and below the standard value.
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Figure 3.4: P Cygni line pro�les, generated by the SEI method, for the standard �
Puppis model wind. This �gure varies the scaled probability of colli-
sional deexcitations, from zero (pure scattering) to values approaching
unity (pure thermal emission).
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result in a vector whose tip traces out an elliptically helical spiral as it propagates
through space. If this ellipse is oriented with an angle � to the `-reference axis
and has an ellipticity (ratio of semiminor to semimajor axes) of tan �, the four
intensity-like Stokes parameters can be de�ned as

I = (I` + Ir) (3.33)

Q = (I` � Ir) (3.34)

U = (I` � Ir) tan 2� (3.35)

V = (I` � Ir) sec 2� tan 2� (3.36)

(see, e.g., Collins 1989). This represents a single elliptically polarized and monochro-
matic beam, expressible most generally as a function of only three independent
variables (I, �, �) since I` and Ir can be written in terms of each other via

I`
Ir

=
1 + cos 2� cos 2�

1� cos 2� cos 2�
: (3:37)

For � = ��=4 (or Q = U = 0) the beam traces out a circular path, and is considered
circularly polarized. For � = 0 or ��=2 (or V = 0) the beam traces out a one-
dimensional, but inclined path, and is considered linearly polarized. For all values
of � and �, this \complete" polarization of a monochromatic beam results in I2 =
Q2 + U2 + V 2.

However, when observing an extended source such as a star, we observe an
unresolved collection of many electromagnetic waves, each with its own polarization,
convolved together into a single time-averaged intensity. By passing this radiation
through, e.g., polarizing �lters and quarter-wave plates, we can obtain some infor-
mation about its overall polarization state. Rede�ning the above Stokes parameters
as the appropriate averages over the incident beams (see Rybicki & Lightman 1979),
we obtain the inequality

I2 � Q2 + U2 + V 2 ; (3:38)

and in the extreme limit of a totally random distribution, Q = U = V = 0, and
the beam is considered unpolarized. Anticipating observations of polarization from
stars, let us de�ne the degree of linear polarization P and the position angle 	,

P �
p
Q2 + U2

I
; tan 2	 � U

Q
; (3:39)

and for a completely polarized beam, the position angle 	 and the ellipse angle �
are equivalent.

Note that the Stokes parameters I and V are invariant under coordinate
rotations about the axis of propagation, butQ and U are not. Thus, when computing
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the emergent Stokes intensities from a heterogeneous and extended collection of
emitters, it becomes necessary to refer the four components due to each emitter to
the same set of axes. This is achieved by rotating the vector-like intensity through
an angle  , 0

BBBBBBBB@

I 0

Q0

U 0

V 0

1
CCCCCCCCA

=

0
BBBBBBBB@

1 0 0 0

0 cos 2 sin 2 0

0 � sin 2 cos 2 0

0 0 0 1

1
CCCCCCCCA

0
BBBBBBBB@

I

Q

U

V

1
CCCCCCCCA

; (3:40)

where  is de�ned in practice as the angle between the chosen Q-axis for the entire
region and the individual normal vectors to the scattering planes which produce the
bulk of the polarized radiation.

The observation of polarization from stars is a di�cult task. Although Chan-
drasekhar (1946) predicted that Thomson scattering in stellar atmospheres can give
rise to as much as 12% local linear polarization at the limb, this e�ect averages to
zero over a spherical star, for which there is no preferred plane on the sky. It was
not until Kemp et al. (1983) observed a phase-dependent variation of polarization
from the eclipsing binary Algol that this e�ect was actually con�rmed from indi-
vidual portions of an occulted star. A rapidly rotating star will also exhibit a small
degree of atmospheric polarization (�0.1%) because oblateness and gravity darken-
ing create a preferred plane on the sky (Rucinski 1970; Collins, Truax, & Cranmer
1991). In addition, Collins & Cranmer (1991) predicted that rapidly rotating stars,
which produce Doppler-broadened absorption line pro�les, should exhibit a slightly
stronger variation in linear polarization across these \spatially �ltered" lines.

In this work, however, we are mainly concerned with the polarization due to
the circumstellar gas, and we will assume the incident light from the star is initially
unpolarized. Many classes of hot stars which exhibit emission lines (Be, Of, Wolf-
Rayet stars) are also observed to have signi�cant (� 1{2%) linear polarization, and
this is assumed to come from an asymmetric outer envelope (see, e.g., Zellner &
Serkowski 1972; Coyne & McLean 1982; Schmidt 1988). The polarization of Be
stars is commonly interpreted as arising from Thomson scattering of photospheric
radiation in a rotationally-
attened envelope or disk. Because the circumstellar
environments of most O and B stars are optically thin to continuum radiation, let us
follow Brown et al. (1978) and Wood et al. (1993) in treating this region as a single-
scattering medium, thus ignoring absorption, local emission, and multiple-scattering
of photons (see, however, Wood et al. 1996). The formal solution to the equation of
radiative transfer (eq. [3.1]), in the limit of the scattered radiation dominating the
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direct stellar radiation, reduces in the optically thin limit to
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0
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0 : (3:41)

Representing all intensity-like quantities as four-component Stokes vectors, the 
ux
can be written as
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which is e�ectively a volume integral over the optically thin scattering envelope,

F� =
1

D2

Z
V�
�e �S� dV� ; (3:43)

where the distance from the observer to the envelope D is considered much larger
than the internal dimensions of the envelope.

The four-component Stokes source function for the Thomson scattering must
be evaluated to take into account the geometrical e�ects of scattering between the
` and r polarization planes. Assuming coherent scattering, the source function can
be written as
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where the incident intensity is assumed to be unpolarized,
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and the 4�4 redistribution matrix R is the product between a Rayleigh phase matrix
which takes into account local scattering between the four Stokes components, and
the rotation matrix given above (eq. [3.40]) which a�xes each scattering into a
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single coordinate frame. When this matrix is multiplied by the unpolarized incident
intensity vector (see Wood et al. 1993 for details), the source function becomes
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where � = cos�1(n̂ � n̂0) is the scattering angle between the direction of incident ra-
diation n̂0 and the direction pointing to the observer n̂. Note that all V -components
are thus zero, implying linear polarization of circumstellar envelopes. (Stars with
magnetic �elds, however, will have a non-zero V polarization due to the Zeeman
e�ect; see Collins 1988.)

For the simple cases of a point source and a spherical, uniformly-bright star
at the origin, the angles � and  are evaluated in a straightforward manner, and
eq. (3.43) above can be integrated over the source volume V� and incident solid
angles 
0 to determine the emergent Stokes 
uxes. The normalized degree of linear
polarization and position angle are de�ned by Wood et al. (1993) as
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where the direct \core" 
ux is given for a spherical star at the origin by

Fcore
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Brown et al. (1978), Bjorkman (1992), and Wood et al. (1993) performed the above
volume and solid angle integrals for various geometries and derived several useful
analytic formulae for P� and 	� for the case of an axisymmetric disk-like density
enhancement. Speci�cally, if one ignores the occultation of material behind the star,
one obtains the particularly simple result for such a disk:

FQ
� / sin2 i ; FU

� = 0 ; (3:49)

and this potentially allows the separation of such inclination-dependent quantities
as Veq sin i. Brown (1994) reviewed various applications of the above theory to
observations of Be star disks, axisymmetric and expanding winds, and even time-
dependent inhomogeneities in winds such as the small-scale \blobs" inferred from
Wolf-Rayet emission lines. In subsequent Chapters we will numerically compute the
polarization from winds with large-scale rotational structure, with the eventual goal
of comparing these theoretical values with observations.


