
Chapter 2

THE THEORY OF RADIATIVELY DRIVEN STELLAR

WINDS

You must take the will for the deed.

With a heart and a half

if I could raise the wind anyhow.

James Joyce, Ulysses

2.1 Equations of Radiation Hydrodynamics

Stellar winds are driven by net outward forces on photospheric and circum-
stellar gas, and the resulting motion is determined by solving the dynamical equa-
tions of mass, momentum, and energy conservation. To apply the solutions of these
partial di�erential equations to actual physical systems, however, it is important
to understand their mathematical structure. In many cases the equations admit
time steady wind solutions whose topology is characterized in terms of singular and
critical points of the 
ow. In other cases no steady-state solutions exist, and the
wind's velocity and density must either become non-analytic (discontinuous in value
or derivatives) or time-variable. Studying various analytic and numerical methods
of solving the dynamical equations can even lead to the discovery of underlying
physical laws which govern the acceleration of stellar winds; e.g., we suspect, but
have not yet proven, that certain time-steady wind solutions represent nonlinear
\attractors" governed by new variational principles. A wealth of complex physics
lies just beneath the surface of hot-star wind theory, and the present work only
scratches this surface.

The �rst question to address, then, is that of the origin or initiation of stellar
winds. We �nd below that both static and accelerating solutions may be possible

12



13

in some cases, but the observations clearly point to the existence of winds whenever
possible. Cannon & Thomas (1977) and Andriesse (1981) propose the existence
of inherent nonthermal subphotospheric instabilities that rapidly accelerate small
perturbations to generate a wind, but such \sources" of mass loss are unnecessary in
early-type stellar environments because of the strong force exerted by the radiation
�eld. The maximum amount of possible mass loss is determined in the wind by
the stellar radiation, and as much material as needed (from the near-hydrostatic
atmosphere) can be \pulled up" from above. In fact, this radiation force is itself
unstable to small perturbations (see Section 2.4), which may be able to amplify
small deviations from a static atmosphere into a full-blown supersonic wind. Abbott
(1979) and Babel (1995, 1996) investigated the limits of wind maintenance and
initiation in the HR diagram, and veri�ed that whenever radiation-driven mass loss
is possible, it invariably occurs.

The idea that material can be ejected from the star by the absorption and
scattering of radiation was �rst suggested by Milne (1924, 1926) and Johnson (1925,
1926) who found that the force on selected ions due to the absorption of photons
can greatly exceed gravity. These forces, though, were assumed to be impulsive
in nature, and that the accelerated ions eventually fell back down onto the star.
However, Milne (1926) also predicted that these ions may be Doppler shifted out of
the core of their photospheric absorption line, and thus experience a much greater
force from the unattenuated continuum. Contrary to the prevailing notions, then,
Milne anticipated a steady ionic out
ow with an asymptotic terminal velocity v1
two to three times the surface escape velocity, i.e., that \the prodigal never returns."

When these theories were revived by Lucy & Solomon (1970), Castor (1974),
and Castor, Abbott, & Klein (1975, hereafter CAK) in the hopes of explaining
observed mass loss from O stars, the treatment was of a single hydrodynamic 
uid
driven by stellar radiation, not a heterogeneous collection of ions. This assumption
of a fully-mixed, or collisionally-coupled plasma was examined by Castor et al. (1976)
and justi�ed for O-star winds. The motion of the heavy ions driven by line radiation
(C, N, O, Fe, etc.) induce electrostatic forces which carry along an appropriate
number of electrons, which themselves are also weakly driven by Thomson scattering.
Collisions with the remaining protons and helium nuclei create a net frictional force
which damps out relative motion between the various species. For winds from O
and Wolf-Rayet stars, the drift velocities between these populations are found to be
much smaller than the associated thermal velocities, and the one-
uid approximation
is valid. For the lower-density winds around B and A stars, however, decoupling
between the ions and the bulk plasma can occur and lead to \frictional heating"
and high temperatures (Springmann & Pauldrach 1992; Gayley & Owocki 1994) or
fully-separated multicomponent winds that may appear chemically peculiar (Babel
1995, 1996).
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In this work we will assume a single-
uid treatment of a stellar wind. Starting
from �rst principles, the hydrodynamic equations of mass, momentum, and energy
conservation (Landau and Lifshitz 1987) form the basis of our wind models. For
simplicity, we neglect forces due to electric and magnetic �elds in these equations
and defer consideration of plasma and magnetohydrodynamic e�ects to future work.
Expressed in di�erential form, these equations are as follows:
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where the 
uid velocity v, the mass density �, and the gas pressure P are functions
of position and time. The vector acceleration g includes external body forces such
as gravitation and radiation forces, and the viscosity coe�cients � and � are often
considered constant. Note, however, that the low-density gas surrounding most
stars is often assumed inviscid (� = � = 0), and this simpli�cation will be utilized
herein (see Castor et al. 1976). Equation (2.3) represents the conservation of internal
(microscopic) energy, and the constant 
 is the ratio of speci�c heats cP =cV (usually
5/3 for a monatomic gas). H(T ) is a temperature-dependent rate of net heating or
cooling.

Although the equation of energy conservation is formally required to complete
the hydrodynamic system to be solved, the conditions in stellar winds often allow for
an immediate, if approximate, solution to this equation. In the regions surrounding
early-type stars, radiative heating and cooling terms in H(T ) dominate the energy
balance, and the time scale for the gas to gain or lose energy is short when compared
to the time scale of the 
ow. These conditions allow radiative equilibrium to be
assumed throughout large parts of the wind, and a solution for the gas temperature
T (r) is thus simpler to evaluate. Klein & Castor (1978) solved the full radiative
equilibrium problem for hydrogen in a spherical stellar wind, and they concluded
that the electron temperature is approximately constant with radius, and slightly
less than the photospheric e�ective temperature Te�.

This work has been extended (Stewart & Fabian 1981; Drew 1989) using
more accurate statistical and thermal equilibrium calculations, and more extensive
atomic data. Drew (1989) �nds that the ratio of the wind temperature to the stellar
Te� shows a slow decline with radius, from �0.8 at the stellar surface to nearly �0.6
at twice the stellar radius, and is not sensitively dependent on the heavy element
abundances. Bunn & Drew (1992) �t the computed temperature variation with
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a function which depends only on the local wind velocity; this implies a constant
asymptotic temperature as r ! 1. Fortunately, the highly supersonic hydrody-
namic structure of the stellar wind is relatively insensitive to these temperature
variations, and we safely assume a simple isothermal T (r) = Te� in the remainder
of this work.

Thus, the inviscid hydrodynamic equations of mass and momentum conser-
vation, together with an appropriate equation of state, can be considered a closed
set of �ve equations in �ve unknowns (P , �, v). The spherical (or near-spherical)
symmetry of stellar environments naturally leads us to express these equations in
spherical polar coordinates, and in component form, as
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To model the wind surrounding a hot star, several additional simplifying as-
sumptions are commonly made to facilitate solutions to the above equations. In this
Chapter we examine the problem of a spherically symmetric wind (with v� = v� = 0
and all angular derivatives also zero) and explore possible time-steady con�gura-
tions. Even at this simpli�ed level, however, the equations of motion are highly
nonlinear, and various methods of solution will be discussed. In subsequent Chap-
ters we investigate multidimensional and time-dependent models of hot-star winds,
which usually can only be constructed numerically.

Consider a spherical star of mass M�, radius R�, and bolometric luminosity
L�, with a time-steady and spherically-symmetric wind. The hydrodynamic equa-
tions reduce to one-dimensional (radial) forms. The equation of mass conservation
is thus
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which can be easily integrated and formed into a constraint on the total outward
mass 
ux (the amount of mass lost by the entire star per unit time),

_M � �dM�

dt
= 4��vr2 = constant ; (2:9)
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replacing vr by v in this one-dimensional analysis. This constraint will later allow
us to eliminate the density � from the momentum equation.

The radial component of the momentum equation is given by
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To evaluate the pressure P it is useful to assume an ideal gas equation of state of
the form

P =
�kBT

�mH
= �a2 ; (2:11)

where a is the isothermal sound speed, kB is Boltzmann's constant, � is the mean
molecular weight of gas particles, and mH is the mass of a hydrogen atom. The
mean molecular mass in the case of complete ionization can be approximated by

1

�
= 2X + 3

4Y + 1
2Z ; (2:12)

where X, Y , and Z represent the mass fractions of hydrogen, helium, and heavy
elements in the wind (Mihalas 1978). In all models of O and B stars in this work
we assume solar-like elemental abundances (X = 0:73, Y = 0:24, Z = 0:03), but in
models of Wolf-Rayet winds we assume a pure helium state (Y = 1) for simplicity.

If the gas temperature T , and thus the sound speed a, is assumed to be a
known function of radius, the mass 
ux constraint above can be used to eliminate
the density �, and the resulting equation of motion reduces to 

v � a2

v

!
dv

dr
=

2a2

r
� da2

dr
+ gr : (2:13)

The external acceleration gr can be written as a sum of gravitational and
radiation forces, where the radiation �eld is naturally separable into that due to the
continuum and spectral lines,

gr = �GM�

r2
+ gCrad + gLrad : (2:14)

The radiative force terms are derived in their entirety in Section 2.2, but can be
parameterized in some cases rather simply. In contrast to the stellar interior, where
thermodynamic equilibrium allows the radiation force to be expressed as the gradient
of a scalar isotropic \radiation pressure," the nonlocal character of the radiation
�eld in the expanding circumstellar gas (and its associated dependence on the wind
velocity) does not allow this simpli�cation, and knowledge of the dynamic properties
of the 
uid is required.
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2.2 The Sobolev Radiation Force

2.2.1 The Continuum and Individual Lines

Radiation is able to transfer momentum to matter via the absorption and
scattering of photons. The acceleration (force per unit mass) due to a radiation
�eld at a point r (Mihalas 1978) is given by
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c
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where �� is the total (absorption plus scattering) mass extinction coe�cient (in
cm2/g) which is assumed to be isotropic (i.e., independent of direction 
). The
variables I� and F� are the monochromatic radiative intensity and 
ux, respectively,
and the unit vector n̂ is the direction of 
ow of the radiation, over which the intensity
moment is integrated over solid angle 
.

We can separate the opacity and radiation �eld into continuum (in hot stars,
presumed dominated by electron scattering) and line processes. Although spectral
lines subtend only narrow bands of wavelength, they play an important role in wind
driving. This is because bound atoms resonate, or constructively interfere with
continuum photons. This broad-band excitation of a resonance is the same e�ect
that makes a whistle loud or a laser bright; the response remains signi�cant even
when averaged over the entire continuum (see Gayley 1995). Thus, treatment of
both continuum and line radiation driving is important in hot-star wind theory, and
the force can be separated into two general components:

grad = gCrad + gLrad (2.17)
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where �e is the Thomson scattering opacity, �L is the mass absorption coe�cient
of a single line, and ~�(�) is a normalized line pro�le function. Note that if the gas
at position r is in motion, the frequency of radiation �0 seen at r will be Doppler
shifted, to �rst order, by

�0 = �o

�
1 +

1

c
n̂ � v(r)

�
: (2:19)



18

Here, �o is the emitted frequency and v(r) is the 
ow velocity of the gas, assumed
nonrelativistic. Let us make the standard change of variables, de�ning the dimen-
sionless frequency displacement (from line center) in Doppler units as

x �
�
� � �o
��D

�
; (2:20)

where the Doppler width ��D = �ovth=c, and vth is the ion thermal speed in the gas.
This thermal velocity is a sensitive parameter in many wind models, and is de�ned
from kinetic theory in a similar way as the isothermal sound speed a (eq. [2.11]),

vth =

s
2kBT

AimH
; (2:21)

where Ai is the mean atomic weight of the driving ions in question. For ions of
heavy elements such as carbon, nitrogen, and oxygen, the ratio vth=a is of the order
0.2{0.3. However, many authors de�ne a \�ducial" thermal speed of a gas composed
primarily of hydrogen ions (Ai = 1), with a ratio vth=a �> 1. We see below (Section
2.2.3) that de�nitions of other important wind variables depend on this choice of
vth, but the radiative force itself does not depend on vth. The radiative acceleration
can thus be written as
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Note that the line pro�le functions ~� and � are both normalized such that

Z
1

�=0

~�(�)d� =
Z
1

x=�1
�(x)dx = 1 ; (2:23)

and the lower limit of integration of the variable x is extended from �c=vth to �1
without appreciable error, because of the �nite extent of the line's opacity in the
overall spectrum. (See Section 3.1.3 for more details about the line pro�le function
and opacity.)

Assuming the wind is optically thin to continuum radiation (as is the case
in O and B stars), the continuum integral is simply the continuum bolometric 
ux
F�. The integral for the lines, however, is more complicated. Note that the general
equation of radiative transfer,

dI�
d��

= �I� + S� ; (2:24)
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has the formal solution (with a di�use term and a \core" boundary term),
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where S�(��) is the source function of the medium, and the geometry-independent
optical depth �� is de�ned, in the moving medium along a general ray of path length
s, as

�� =
Z s

0
�L �(s

0)�

 
x� n̂ � v(r)

vth

!
ds0 : (2:26)

With the assumptions of isotropic scattering and local thermodynamic equilibrium
(LTE), the source function is given by

S� = ��B�(T ) + (1 � ��)J� ; (2:27)

where �� is the photon destruction probability per scattering (absorption albedo),
B�(T ) is the Planck function, and J� is the mean intensity,
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In the frame of reference of a moving atom, we assume the scattering can be con-
sidered coherent. But the thermal Doppler motion of the gas tends to produce a
nearly complete frequency redistribution in the rest frame (Hummer 1969; Castor
1970; Hummer & Rybicki 1992), which greatly simpli�es the form of the source
function. Because the wind is an expanding medium, photons scattered into all di-
rections will be systematically red-shifted in comoving wavelength. Thus, whether
the line is dominated by absorption or scattering processes, photons will \drift" from
the blue to red edge, and emerge with roughly fore-aft symmetry. The net di�use
component of the force, which is proportional to the integral of the now direction-
independent intensity, times the \odd" factor of n̂, will be negligibly small. Castor
(1974) estimates the ratio of the di�use force to the \direct" core force, and �nds it
to be of the order of (vth=jvj), which is indeed negligible in most of the wind.

Let us then keep only the direct term Icore� e��� from the formal solution for
the intensity, and the radiative acceleration can be written as
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In a wind with a monotonically increasing velocity, one can simplify the optical
depth integral (eq. [2.26]), by invoking the Sobolev approximation (Sobolev 1957,
1960), assuming that the variables �L and � do not change appreciably over a
\Sobolev length" LSob. If the 
uid velocity is large enough, the Doppler shift of
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the line frequency will dominate the integrand, and it will be sharply-peaked near
the point at which the frequency x is in resonance with the local component of the

uid velocity. The frequency of the line, at \observer" position r, is changed by
one Doppler width ��D over a length scale LSob on which the gas velocity v is
increased by vth (the local thermal speed of the scattering ions). Thus, if LSob is
signi�cantly smaller than a typical hydrodynamical scale height H�, then the optical
depth integral becomes a function of local variables only, and is dominated by the
Doppler shift of the line pro�le. If

LSob �
vth

dv=dr
� H� =

�

d�=dr
� v

dv=dr
; (2:30)

then a necessary condition for the Sobolev approximation is either the zero thermal
speed (vth ! 0) limit, or the roughly equivalent limit of a supersonic wind (v� vth).
Note the fact that vth � 0:3a for the driving ions, so the Sobolev approximation is
reasonably valid at the dynamically important sonic point of the 
ow, where v = a.
The local variables �L and � can thus be taken out of the optical depth integral,
and
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where the path length ranges from the stellar surface at s0 = 0 (position vector r0)
to the \observer" in the wind at s0 = s (position vector r), with the instantaneous
position r0 = r0 + s0n̂. Because of the assumed monotonic nature of the 
ow, we
can make a one-to-one change of variables into frequency space:

x0 = x� n̂ � v(r0)
vth

; (2.32)
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since dr0 = n̂ ds0, and n̂ is (for now) a constant vector. The velocity gradient term
n̂�r[n̂�v(r)], which emerges from the change of variables, is an important component
of the Sobolev radiative acceleration. This variable is similarly \macroscopic," or
slowly-varying over the spatial scale of an acceleration through vth, and can be taken
out of the integral with �L and �. The optical depth in the Sobolev approximation
is then
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Z
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with the s0 = 0 limit replaced by x0 ! 1, because the photon is most probably
completely out of the line's in
uence far from r. One can de�ne the \Sobolev
optical depth" by grouping the slowly-varying variables taken out of the optical
depth integral,
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which also provides a more rigorous de�nition for LSob. Note that the velocity
gradient term, n̂ � r [n̂ � v(r)], represents the projected component of the gradient
of the velocity component which is projected along the ray n̂, and can be denoted
schematically as (@vn=@n). The absolute value of this quantity is taken because the
Sobolev approximation works in monotonically accelerating or decelerating velocity
�elds. We will ignore this absolute value for the remainder of this Chapter, but
will re-examine its usefulness in subsequent Chapters dealing with more complex
multidimensional winds. One can also de�ne the known integral

�(x; r) �
Z
1

x�n̂�v(r)=vth
�(x0)dx0 ; (2:36)

which is proportional to the error function for a pure Doppler-broadened (i.e., Gaus-
sian) pro�le, or is a step function for an in�nitely sharp (\delta function") line pro�le.
Thus, the line radiation force can be written as
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Because of the limited extent in frequency of most spectral lines, the core intensity
Icore� can be safely assumed to be constant over the line, and taken out of the integral
over the line pro�le frequency variable x. This intensity can be assumed to be a
continuum quantity IC. Thus, the integral becomes analytic, since
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This integral thus represents the general application of the Sobolev approximation
to the force from a sum of spectral lines (Castor 1974).

2.2.2 Simple Force Estimates

The radiative acceleration due to resonant line photons is most rigorously
computed by summing over \line lists" of thousands or millions of individual atomic
transitions. In this dissertation, however, I review several simpler methods of esti-
mating this sum which preserve the most important physics of line driving. Let us
�rst consider the radiation force from a \point source" of radiation on a single line.
This approximation was the original (Lucy & Solomon 1970; CAK) and intuitively
simplest way to view the stellar radiation �eld, and is geometrically valid in the
limit of the wind very far from the star. The direct stellar intensity reduces to

IC(
) =
�
L�

4�r2

�
�(n̂� r

jrj) ; (2:39)
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where L� represents the star's source luminosity spectrum, and the delta function
is merely a schematic way of saying that n̂ and r are parallel for rays coming from
the point-star at the origin. The projected velocity gradient n̂ � r(n̂ � v) is simply
@vr=@r in this limit.

The continuum radiative acceleration due to Thomson scattering of electrons
can be written as a scalar quantity, since the radial components of all vectors are
all that survive, and is

gCrad =
�eL�
4�r2c

; (2:40)

where the continuum bolometric 
ux has been assumed to be simply L�=4�r2. For
a mixture of ionized gases, the Thomson scattering opacity can be expressed as
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with �H = 8�e4=3mHm
2
ec

4 = 0:39778 cm2=g for pure hydrogen (Mihalas 1978). It
is common to group the gravitational and continuum radiation force terms because
they both vary as the inverse square of the radius, and

g + gCrad = �
GM�(1 � �)

r2
; (2:42)

where the continuum Eddington ratio (L�=LEdd) is de�ned as

� =
�eL�

4�cGM�

� 1:5218 � 10�5 (1 +X)
(L�=L�)

(M�=M�)
; (2:43)

and does not consider other continuum opacity sources (e.g., bound-free or free-free
absorption) which are relatively unimportant in winds from O and early-B stars.
The assumption that the wind is optically thin to continuum radiation is implicit
in this development. By de�nition, � must be less than unity for stars which have a
static \core." Stars existing above the Eddington limit of � = 1 have a net outward
combined gravitational and continuum radiation force, and cannot hold themselves
together in a time-steady sense. It is suspected that the strong outbursts of luminous
blue variable (LBV) stars are due to a temporary breach of this Eddington limit
(see Humphreys & Davidson 1994).

The force due to a single spectral line is also a purely radial scalar, and can
be written

gLrad =
�L vth
c2

�
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4�r2

"
1� e��o
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Note that the quantity (�oL�=L�) depends on the product of L� and the line fre-
quency �o itself. If we assume, however, that the line in question has a frequency
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near the peak of the continuum spectrum, this ratio is of order unity and can be ig-
nored. For optically thin lines, �o � 1, the expression in square brackets approaches
unity, and the force falls o� as the inverse square of the radius, like gravity and the
continuum radiation force. For optically thick lines, �o � 1, the exponential e��o

becomes negligible, and

gLrad =
�L vth
c2

L�
4�r2

�
1
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�
=
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4�r2�c2
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The linear dependence of the force on the velocity gradient can be understood by
recalling how the number of photons scattered in a line depends on the red-shift due
to the expanding medium, and when optically thick, all photons in resonance with
the line are scattered. The counter-intuitive notion of a force which both causes

and requires an acceleration is a central feature of Sobolev wind driving, and the
nonlinear \feedback" of this acceleration dependency is discussed further in Section
2.3.

One can approximately consider the e�ect of many lines by assuming an
ensemble of Nthick optically thick lines and Nthin optically thin lines. The thin lines
help to \cancel out" a fraction of the gravity and result in an e�ective gravitational
acceleration

ge� � g + gCrad + gLrad(thin) = �GM(1 � �� �thin)

r2
; (2:46)

where

�thin =
Nthin�L(vth=c)L�

4�cGM�

(2:47)

is constant throughout the wind. (Actually, there are virtually an in�nite number
of weak lines in the spectrum, but the opacity contribution of each is minimal;
the product Nthin�L, however, can be �nite and appreciable.) The resulting ge�
must be negative in the near-static photosphere so that the star can hold itself
together. Thus, although thin lines can help reduce the e�ective gravity, only thick
lines (which interact with the velocity gradient) can produce actual outward wind

driving above the stellar surface. Chen & Marlborough (1994) propose an additional
radial dependence for a force due to thin lines, and are thus able to accelerate a wind
arti�cially with only thin lines. Non-Sobolev e�ects may introduce such terms for
the B stars discussed by Chen & Marlborough, but the large mass loss rates they
attempt to model will probably not result from these corrections (Babel 1996).

Because the thick-line radiative acceleration scales with the velocity gradient
@vr=@r, it can balance the inertial term in the radial momentum equation. If we
assume these two terms balance each other, then

vr

 
@vr
@r

!
= Nthick

L�
4�r2�c2
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!
; (2:48)
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and the mass loss rate is naturally given by eq. (2.9) as

_M = 4��vrr
2 = Nthick

L�
c2

: (2:49)

Also, the asymptotic wind momentum 
ux can be represented by

_Mv1 = Nthick
L�
c2

v1 =
L�
c
(Nthick

v1
c
) : (2:50)

Note that we assume that the lines do not interact with one another (and thus sum
individually), but this depends crucially on their relative spacing throughout the
spectrum. This \single-scattering" limit implies that a photon, which sweeps out
a Doppler velocity range of width v1 from the stellar surface to in�nity, does not
encounter any other lines. The spacing of thick lines, roughly,

�v � c

Nthick
; (2:51)

must be greater than v1 for single-scattering to be valid. Of course, some line over-
lap always exists, but its overall e�ect on the force should be statistically balanced
by regions of line paucity. Thus, it is often useful to consider the ratio of momentum

ux due to the wind to that due to photons (\momentum e�ciency")

_Mv1
L�=c

� v1
�v

; (2:52)

which is often less than or equal to unity in the case of O and B star winds (where
the single-scattering limit is a good approximation). However, Wolf-Rayet stars can
exhibit values of this ratio as large as 5 to 50, implying densely-spaced and multiply-
scattered lines (Willis 1991; Lucy & Abbott 1993; Gayley, Owocki, & Cranmer 1995).
The fundamental upper limit to this ratio, assuming that �nding enough lines is not
a problem, comes when the energy e�ciency (ratio of wind kinetic to photon energy)
approaches unity, i.e., when

1
2
_Mv21
L�

=

 
_Mv1
L�=c

!
v1
2c

! 1 : (2:53)

In this limit, the energy expended by the radiation �eld to accelerate the wind comes
at the expense of a reduction in the radiative energy 
ux itself. This \photon tiring"
may be a signi�cant e�ect in the near-Eddington-limit (� � 1) winds of LBV stars,
but is negligible for most O, B, and Wolf-Rayet stars. The above energy ratio ranges
from � 0.1{2% for O and B stars, and can reach as high as �10% for Wolf-Rayet
stars, but these values are well below the photon tiring limit.
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2.2.3 General Line Ensemble Forces

Instead of a sum of thin and thick lines, the actual ensemble of driving lines
exhibits a continuous range of optical depth �o. The signi�cant insight of CAK
was to model this as a statistical distribution function of line strengths. CAK
�rst considered an extensive list of subordinate C+3 lines and parameterized their
contribution via a power law �t, in terms of a scaled electron-scattering optical
depth t:

gLrad / kt�� ; where t � �e� vth
@vr=@r

: (2:54)

CAK and Abbott (1980) realized that this power law could be expressed equivalently
as a number distribution of lines, and Owocki, Castor, & Rybicki (1988, hereafter
OCR) generalized this, and de�ned an exponentially-truncated power law number
distribution of the form,

dN

d�L
=

1

�o

�
�L
�o

���2
e��L=�max ; 0 < � < 1 ; (2:55)

and �o is related to CAK's force constant k by

�ovth
c

= �e

�
vth
c

���=(1��)"(1� �)

�(�)
k

#1=(1��)
; (2:56)

where �(�) is the complete gamma function. The power-law exponent � charac-
terizes the relative importance of optically thin and thick lines in the distribution:
when � = 0, all lines are thin, and when � = 1, all lines are thick. Detailed line-
list computations have found � � 0.5{0.7 for various stellar environments (CAK;
Abbott 1982a; Kudritzki, Pauldrach, & Puls 1987; Pauldrach et al. 1990; Shimada
et al. 1994). Also, simple models of an \ensemble" of hydrogen-like resonance lines
with Kramers-opacity transition strengths yield the analytic result � = 2=3 (J. Puls,
private communication).

The exponential \cut-o�" parameter �max was introduced by OCR because
a pure power law cannot model the fact that there must exist a single strongest
optically thick line. The overall e�ect of �max is thus to limit the e�ect of strong
driving lines. Theoretically, the value of �max should be equal to (or at least of
the same order as) �o, in order to position the exponential cut-o� near the point
where N(�L) = 1, and thus avoid modeling fractions of lines. Note that the line-list
distribution dN=d�L assumes no overlap in the in
uence of the lines, and thus uses
the single-scattering limit discussed above. In addition, the distribution has been
\
ux-weighted" in frequency such that

dN

d�L
=
Z
1

0
d�
�
�L�

L�

�
dN�

d�L
; (2:57)
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and lines near the peak of the continuum spectrum have a stronger contribution to
the distribution.

The sum over lines in the force is then replaced by an integral,

X
lines

gLrad =
Z
1

0
gLrad

dN

d�L
d�L ; (2:58)

and the total line force becomes
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where �max = (�max �LSob). Thus, if we follow the pure CAK power law ensemble,
with �max !1, the �rst term in the square brackets will be negligibly small, and
the second term will approach unity. Then,

gLrad =
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c2���1o

I
IC(
)
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Now that the complete Sobolev line force has been derived for a generalized
geometry, let us perform the angle integral for certain speci�c cases. For a radial
point source of radiation at the origin, the core intensity is given above in eq. (2.39),
and the angle integral collapses into the purely radial form,

gLrad =
vth

c2���1o
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�(�)
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using CAK's force constant k, de�ned in eq. (2.56). Note that k is sensitively
dependent on vth, and most published computations of k and � assume a �ducial
hydrogen thermal velocity so that k can be de�ned independently of the exact
composition and abundance of heavy (line driving) ions. Gayley (1995) recasts
the CAK line ensemble into a form which clearly separates vth and � from the
normalization constant (k or �o), but we retain the original CAK notation here
because it has become the standard convention.
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Also note that the optically thin and thick limits of � = 0 and � = 1 are
apparent in the above line acceleration, and intermediate values of � span this
range continuously. This expression can be combined with the approximate thick-
line expressions (2.45) and (2.51) to estimate the mean separation between thick
lines in the chosen (k; �) distribution,

�v � v�th
k

"
1

�e�

 
@vr
@r

!#1��
; (2:62)

and the rough validity of the single-scattering limit can be directly assessed from a
given model wind.

2.2.4 The Finite Stellar Disk

For a spherical star of �nite radius R�, the wind at a radius r will \see" a
�nite circular disk of radiation at the origin. Although the continuum force in the
radial direction gCrad will be identical to the corresponding point-source force (due
to Gauss' Law for the radiative 
ux), the line radiation term will be modi�ed by
the presence of nonradial rays from the stellar disk. Symmetry allows us to place
our observer along the z-axis, and

gLrad =
�1��e k

c

I
IC(�0; �0)

"
n̂ � r(n̂ � v)
�(r)vth

#�
n̂ sin �0 d�0 d�0 ; (2:63)

where �0 and �0 are measured from the observer's position, not the origin. The
azimuthal (�0) integral can be performed immediately, but the polar integral is less
trivial.

De�ning �0 = cos �0 and assuming a purely radial velocity �eld, the velocity
gradient can be derived in general (Castor 1974; Koninx 1992), and is given by

n̂ � r(n̂ � v) = �02
@vr
@r

+ (1 � �02)
vr
r

: (2:64)

The bolometric core intensity can be written as

IC(r; �0; �0) =
L�

4�R2
�

D(�0; r) (2:65)

where D(�0; r) is a limb darkening function. Often, a uniformly-bright disk is as-
sumed, with

D(�0; r) =

8><
>:

0; �1 � �0 < ��

1=�; �� < �0 < +1
(2:66)
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where

��(r) �
s
1� R2

�

r2
(2:67)

de�nes the stellar limb, and D(�0; r) is normalized to give the same angle-integrated

ux as in the point-star case, via
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D(�0; r)�0 d�0 : (2:68)

Note that one could also use simple linear (grey atmosphere) limb darkening, ob-
tained from the Eddington approximation,

D(�0; r) =

8><
>:

0; �1 � �0 < ��

(2 + 3�00)=4�; �� < �0 < +1
; (2:69)

where �00 = cos �00, the angle on the star between radius r and the direction n̂

towards the point in the wind. Plane trigonometry gives this angle in terms of the
observer-centered angle �0:

�00 =

vuut1� r2

R2
�
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�

; (2:70)

and, for completeness, the star-centered angle �o = �00 � �0 is given by

�o = cos �o =
r
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The general radial line radiation force is now given by
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It is common to de�ne and work with a �nite disk factor, which isolates the �nite
disk correction to the simple point source model, and is the ratio of respective line
accelerations,
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L � gLrad(�nite disk)
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(2.73)
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and is, in general, a vector quantity. The �nite disk factor does not depend on the
wind density �(r) or on the line distribution constant k, but does depend sensitively
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on the exponent �. A continuum �nite disk factor �C can also be de�ned, but for a
spherical star it is purely radial with a magnitude of unity. Note that, if one de�nes
the logarithmic derivative variable (Castor 1970)

� =
@ ln vr
@ ln r

� 1 =
r

vr

@vr
@r

� 1 ; (2:75)

then one can express the projected velocity gradient as
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and the �0-integral becomes easier to evaluate. This � variable is a convenient
measure of the anisotropy of the local velocity gradient. Very close to the star �� 1,
which implies the radial velocity derivative @vr=@r dominates the overall expansion.
At an intermediate radius in the wind, � drops to zero, and the expansion is locally
isotropic. In the outer wind, � asymptotically approaches �1 at large radii, and the
spherical geometry, in the term vr=r, dominates the (now mainly lateral) expansion.

For the uniformly bright disk (Castor 1974; CAK), the �0-integral can be
evaluated analytically using eq. (2.76) for the projected velocity gradient, and the
radial component of the �nite disk factor is

�Lr (uniform) � �un =
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(1� �2
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Kudritzki et al. (1989) and Koninx (1992) de�ne a convenient variable
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and the uniformly bright �nite disk factor can be written as a function of this single
variable,

�un =
1 � (1 � �)1+�

�(1 + �)
: (2:80)

For points extremely far from the star, r!1, �� ! 1, and � !�1, �un naturally
approaches unity, because the star more and more resembles a true \point source."
Very close to the stellar surface, however, �� ! 0 and � � 1, and in this limit,
�! 1, and

�un ! 1

1 + �
: (2:81)
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For the linearly limb-darkened disk, the �nite disk factor takes the form
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This integral is, in general, analytically intractable. However, for points extremely
far from the star, and for the � = 0 point, �limb naturally approaches the uniformly
bright �un (which is unity at these radii). Very close to the star, when �� ! 0 and
�� 1,

�limb
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! 1
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�
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which only ranges between 1 and 1:1 for all allowed values of the exponent �.
For example, when � = 0:5, this ratio approaches 1:0625, and when � = 0:7, it
approaches �1.0795. Note also that for � = 0:5, the above integral can be computed
analytically, but the expression is extremely complex, and there is little practical use
in transcribing this solution here. Figure 2.1 illustrates the radial dependence of �un
(dashed line, computed analytically) and �limb (solid line, computed numerically)
for various values of the exponent �, and for various velocity laws characterized by
the simple �tting formula

vr(r) = v1

�
1 � R�

r

��
: (2:84)

Note that the error in assuming a uniformly bright disk is small, only 5{8% near
the surface, and much less so further out.

We can assess the dynamical impact of this modi�ed �nite disk factor on a
one-dimensional spherically symmetric wind by examining the equation of motion of
the wind in the highly supersonic, or zero sound speed limit (Kudritzki et al. 1989;
Gayley, Owocki, & Cranmer 1995). Near the surface of the star (�� 1), where the
mass loss rate is thought to be determined, the overall e�ect of any �nite disk factor
� on the mass loss rate _M can be approximated by

_M � �1=� _M(point source) ; (2:85)

where � is evaluated at the dynamical critical point (see Section 2.3.2 below). Thus,
if we can assume the surface values of �limb=�un at the critical point, the e�ect
of including limb darkening could result in a relative mass loss increase of �11%
(� = 0:7) to �13% (� = 0:5) over the uniformly-bright models.

2.2.5 The E�ect of the Ionization Balance

Abbott (1982a) performed an extensive calculation of the radiative line force
using a list of bound-bound transitions spanning six stages of ionization and the
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Figure 2.1: The spherical-star �nite disk (FD) factor, plotted versus radius in
the wind, for various models and assumptions. The dashed lines are
the analytic uniformly-bright FD factors, and the solid lines are the
numerically-computed FD factors with linear limb darkening. The
two plots represent winds with � = 0:5 (left) and � = 0:7 (right), and
the three sets of curves on each plot represent (from top to bottom)
velocity laws with � = 0:5, 1.0, and 10.0.
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elements H to Zn. This work con�rmed earlier results concerning the dependence
of the force on the temperature distribution and chemical composition (through,
e.g., the continuum opacity �e), but introduced a new dependence on the relative
state of ionization of the wind. It was found that, since lower ionization stages
contain more lines, the force tends to increase with increasing electron number
density ne, as roughly predicted by the LTE Saha rate equation. However, because
the ionization balance remains roughly constant throughout the wind, the force is
relatively insensitive to this phenomenon, and is a minor (but necessary) e�ect.
Abbott (1982a) thus assumed a weak power-law dependence on the quantity

N11 � ne
W
� 10�11 cm3 ; (2:86)

where the dimensionless \dilution factor" W is de�ned as the fraction of solid angle

� occupied by the star for an observer at distance r, and for a spherical star,
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and it is required to take into account the spherical geometry of the extended en-
velope around the star. The local radiation density is diluted by this amount as
one moves away from the star, and thus a�ects the photoionization-recombination
balance directly. Mihalas (1978, eq. [5-46]) showed that the ionization balance of
spherically symmetric winds, via the population ratio (Nj=Nj+1), depends linearly
on the above factor of (ne=W ).

For a fully-ionized gas, one can write ne � �=�mH , with the mean molecular
weight � de�ned as above in eq. (2.12), and the modi�ed �t to the radiation line
force can be written

gLrad =
GM�

r2
k�
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@vr
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11 : (2:88)

The exponent � typically ranges from 0.02{0.2 in early type stellar winds, and
the radiative force thus depends on the density as ����. Pauldrach et al. (1990)
more recently computed non-LTE models for the line force, using more than 105

transitions, and found agreement with Abbott's values of � at Te� > 35; 000 K, but
found slightly lower values for cooler temperatures.

2.3 Wind Solutions

2.3.1 Nonlinear Solution Methods

The radiative acceleration derived in Section 2.2 can now be inserted into the
radial momentum conservation equation derived in Section 2.1, and this equation
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can be solved for the velocity law vr(r) and mass loss rate _M of the wind. We
proceed in this Section from approximate analytic solutions to successively more
sophisticated numerical solutions, and we apply these results to a standard model
of the O4f supergiant � Puppis (HD 66811) to compare with observations. For this
model, we take M� = 60M�, R� = 19R�, L� = 8 � 105L�, and Te� = 42; 000K
(see, e.g., Howarth & Prinja 1989; Kudritzki et al. 1992). We assume an isothermal
wind of temperature Te�, corresponding to a sound speed a = 24km s�1, and use
the line-driving constants � = 0:60, k = 0:15, and � = 0. The observed terminal
velocity of � Puppis is approximately 2200{2500 km s�1, and the mass loss rate,
depending on the method of measurement, ranges from 2�10�6 to 6�10�6M�yr�1

(Prinja et al. 1990; Lamers & Leitherer 1993; Puls et al. 1996).

Using the mass 
ux constraint (eq. [2.9]) to eliminate the density in the line
acceleration, the \CAK equation of motion" can be written in terms of the radius
r, radial velocity v, and mass loss rate _M , as
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where we temporarily neglect the Abbott (1982a) �-factor. We implement a conve-
nient choice of dimensionless variables,

x � r
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GM�

 
dv

dr

!
=
x2u

�

 
du

dx

!
; (2:90)

although for non-isothermal winds, the normalizing value of a must be chosen at
a representative radius. Also, the CAK equation is multiplied by an overall factor
of r2=GM� to scale out the gravitational acceleration. Note that the constant � �
GM�=a

2R� is de�ned as the ratio of the stellar radius R� to the density scale height
H� = a2=(GM�=R

2
�) at the stellar surface. Also, � is the ratio of twice the \Parker

radius" (GM�=2a2) to the stellar radius R�, and is a useful constant when working
with the dimensionless variables x, u, and w. The left-hand side of the equation of
motion, then, is an explicit function F1 of x, u, and w:

F1(x; u;w) =
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1� 1

u2

�
w �H(x)� C�w� = 0 ; (2:91)
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The equation F1 = 0 thus needs to be solved for u and w as functions of x, the
normalized radius, and for the constant _M , which we shall see acts as an eigenvalue
of the problem.

It is becoming evident that steady-state solutions to CAK-type equations
(see, e.g., Poe, Owocki, & Castor 1990) represent a kind of \attractor," where the
mass loss rate _M is maximized for a given set of initial parameters. However, if
_M is too large, and too much mass is pushed outwards, the radiative force cannot
drive the material to in�nity, and it falls back down on the star in a time-dependent,
usually oscillatory, manner. Thus, steady-state solutions tend to exhibit a unique
value of _M , which represents the maximum mass that can be driven to in�nity, and
thus is the focal point of the attractor.

The wind equation F1(x; u;w) = 0 is a highly non-linear di�erential equation.
The variable w, however, is proportional to du=dx, and if it were possible to solve for
w, one could integrate the equation to �nd the desired velocity law u(x) of the wind.
Because there are di�erent regions in the x-u phase space where there are zero, one,
or two real solutions for w, one must further specify the singularity condition

F2(x; u;w) =
@F1

@w
= 0 : (2:94)

The solution to the two equations F1 = 0, F2 = 0 forms a curve, the \singular
locus," in phase space, which divides a region of no solutions from a region of two
solutions (see Cassinelli 1979; Bjorkman 1995). Because the �rst class of velocity
solutions u(x) we wish to consider are the most well-behaved, mathematically (i.e.,
continuously di�erentiable functions of x that range from x = 1 to x ! 1), we
require that these solutions not cross this problematic singular locus.

If the wind equation were linear in w or du=dx, i.e., if

F �

1 = A1(x; u) +
du

dx
B1(x; u) = 0 ; (2:95)

then the singularity condition would demand both A1 = 0 and B1 = 0, and this
de�nes a discrete set of \critical points" fxc; ucg of the 
ow. Parker's (1958, 1963)
isothermal solar wind solutions have this topology, and the only solutions which
satisfy all physical boundary conditions must pass through a transsonic critical
point uc = 1. The velocity derivative at the critical point is given by L'Hôpital's
rule,  

du

dx

!
crit

= �dA1=dx

dB1=dx
; (2:96)

and Abbott (1980) and Koninx (1992) demonstrate that critical points are also
locations where small perturbations in the 
ow have zero characteristic velocity in
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the inertial frame of the star. Of course, solutions which do not pass through critical
points are possible (e.g., Chamberlain's [1961] \breeze" solutions), but they can have
drastically di�erent boundary properties from those which do pass through critical
points.

The general nonlinear form of F1(x; u;w) in the present hot-star wind analysis
has a similar general character to the linear limit above in that there are critical
points of the 
ow, existing on singular loci, which can be located using the above
singularity condition and a nonlinear generalization of L'Hôpital's rule, the so-called
regularity condition,

F3(x; u;w) � @F1
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+
du

dx
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@u
(2.97)
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Non-critical points that lie on singular loci do not connect to analytic (continuously
di�erentiable) solutions, so if a desired steady-state solution must \graze" a singular
locus, it must do so at a critical point. Poe, Owocki, & Castor (1990) found that,
in the Sobolev approach, the wind solution which carries the maximum mass loss
rate to in�nity is precisely that which grazes the singular locus at a critical point.
(See also Bjorkman 1995 for a discussion of other formal critical points of the CAK
equations.)

The three equations, F1 = F2 = F3 = 0, almost serve to specify the critical
values of xc, uc, and wc, but what thwarts a straightforward solution is the fact
that the value of the constant mass loss rate _M (or equivalently, the constant C in
eq. [2.91]) is initially unknown. Thus we have three equations and four unknowns.
This problem is solved in practice by guessing a value for the critical radius xc, and
solving the system of equations for uc, wc, and C. With this trial critical solution
in place, one needs to evaluate whether the velocity law u(x) which passes through
it is consistent with the assumed static stellar model. After integrating u(x) from
xc down to the star's surface (x = 1), various tests can be performed to evaluate
the consistency of the model wind. This \matching" of the core/halo boundary
conditions is, in e�ect, the fourth piece of information required to determine all the
variables at the critical point. CAK de�ned the stellar photosphere as the surface
at which the optical depth is unity, and a continuum Sobolev optical depth variable
t can be evaluated as a check:

t � �e�vth
dv=dr

=
�

�evth
4�GM�

� _M

w
; (2:99)
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where w is evaluated at x = 1. Note that, although t is not the true optical depth
as seen by an observer at in�nity, it approaches the true continuum optical depth,

�c =
Z
1

R�

�e� dr � �e�H� � �e�
v

dv=dr
; (2:100)

where H� is the density scale height (related to the 
ow velocity scale height by
the mass continuity equation), when v � vth as is the case very near the stellar
surface. Near the photosphere, the wind velocity grows exceedingly small, and one
can begin to assume hydrostatic conditions. If the near-isothermality of the gas is
maintained, then the density rises (and the velocity falls) exponentially with depth,
and di�erences of a few scale heights do not appreciably a�ect the overall position
of the actual stellar radius (the x = 1 point).

Although this implies that the condition t � 1 can be used to locate the
photosphere, and thus utilized to iterate to �nd the correct value of xc, the use of
the Thomson scattering opacity in t is suspect both in B stars, where bound-free and
free-free continuum processes become important, and in Wolf-Rayet stars, where the
continuum is optically thick in large regions of the wind. Thus, in practice, the most
robust way to \locate the static photosphere" is to integrate downwards from the
assumed xc and evaluate the velocity v(1) at x = 1 (usually via extrapolation from a
numerical grid). The near-hydrostatic region is entered when v(1)� a, or u(1)� 1,
and a useful condition to de�ne the photosphere is to set a constant fraction of the
sound speed, say u(1) � 0:01. Usually, if the extrapolated value of u(1) is too large,
then xc is too close to the stellar surface, and if the extrapolated u(1) is too small,
then xc is too large. Often, for xc much too large, the integration may suggest a
value of u(1) which is unphysically negative, or there may not be solutions to the
wind equation below a certain radius.

Usually, one avoids integrating outward from the critical point until the iter-
ation process outlined above converges on the correct critical point xc. CAK suggest
a further iteration to �nd the temperature structure, and Pauldrach, Puls, & Ku-
dritzki (1986, hereafter PPK) perform this using non-LTE radiative transfer, but
since the wind velocity structure is quite insensitive to the temperature law, we shall
consider the imposed T (r) = Te� as correct. Lucy & Abbott (1993), however, de-
rive a clever approximate method for determining T (r) in Wolf-Rayet winds which
is worthy of note. One can write the radiative force due the combined e�ect of
continuum and lines in terms of a general \e�ective" scattering coe�cient,

(gCrad + gLrad) =
�e�(r)

c

L�
4�r2

; (2:101)
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and use the velocity law (obtained via a previous iteration in the temperature struc-
ture) to solve for �e� as a function of radius from the equation of motion:

�e�
�e

=
1

�

��
1� 1

u2

�
w �H(x) + �

�
: (2:102)

This scattering coe�cient allows an optical depth variable to be de�ned,

~� =
Z
1

r
�e� �

�
R�

r

�2
dr ; (2:103)

which here assumes an isotropic Eddington factor f� � K�=J� = 1=3, as opposed
to the radial-streaming value f� = 1 assumed in eq. (2.100) above (see Mihalas
1978). This optical depth can be used in a modi�ed Milne-Eddington temperature
distribution for a spherically extended gray atmosphere in radiative equilibrium,

T (r)4 =
1

2
T 4
e�

�
2W +

3

2
~�
�

; (2:104)

where the dilution factor W is given by eq. (2.87). In the optically-thin limit, T (r)
depends only on W 1=4, which varies very slowly with radius. This method of zero-
order radiative transfer takes into account \line blanketing" due to the spectral lines
that contributed to the line radiation force, but is necessarily limited by the many
approximations discussed above.

2.3.2 Analytic Approximations and Empirical Fits

The �rst analytic solution of the Sobolev wind equations was that of CAK,
who ignored the �nite disk factor (� = 1), considered constant values of k and �
with radius, and neglected the ionization factor �. Also, since gas pressure forces
play a relatively minor role in driving the highly-supersonic wind, one can neglect
these terms (a ! 0) in the CAK wind equation (2.89). In fact, the assumption of
\zero sound speed" is an approximation of the same order as the use of the Sobolev
approximation in both the subsonic and supersonic regions. The wind equation
becomes, in the limit a! 0 (or, equivalently, u� 1),

F1 � w + 1� �� Cw� = 0 ; (2:105)

and the singularity condition

F2 =
@F1

@w
� 1� �Cw��1 = 0 (2:106)

allows for the immediate solution of w and C at the critical point,

wc =
�

1� �
(1 � �) ; C =

1

��

�
1� �

1� �

�1��
: (2:107)



38

Note, however, that the equation F1 = 0 here does not depend on the radius r.
Thus, if one point in the wind satis�es the critical conditions, all points do, and
w / r2v(dv=dr) remains constant in the wind. Thus, one can immediately integrate
from the stellar radius R�, and obtain

vCAK(r) = v1

�
1� R�

r

�1=2
; (2:108)

where the asymptotic (\terminal") wind speed is given by

v1 =

s
�

1� �

2GM�(1 � �)

R�

=

s
�

1� �
Vesc : (2:109)

In addition, the mass loss rate can be found from the de�nition of the constant C
(and, of course, the assumption that k and � remain constant throughout the wind),
and

_MCAK =
L�
c2

8<
:�k1=�

�
c

vth

�"
(1� �)�

1 � �

#(1��)=�9=
; : (2:110)

For our standard model of � Puppis this CAK analysis yields v1 = 1080 km s�1

and _M = 5:9 � 10�6M�yr�1, and the terminal velocity v1 is quite di�erent from
the observed value. The mass loss rate scales with k1=�, so modeling a given _M , at
least in an ad hoc fashion, is not di�cult. CAK also computed numerical models
with �nite gas pressure terms, and found only small variations from the analytic
results above. However, these models allowed the computation of a unique critical
radius xc, which CAK found to be approximately 1.5{1.7 times the sonic radius xs,
which is the radius at which v = a, and is usually extremely close to the photosphere
(xs � 1).

The critical radius xc and velocity uc can be estimated by applying the reg-
ularity condition F3 = 0 to the wind equation (2.91), with no �nite disk factor
(� = 1), but retaining the small terms proportional to the �nite sound speed. Thus,

F3 =
@F1

@x
+
�
�w

ux2

�
@F1

@u
= � 2

�
+
2�w2

u4x2
= 0 ; (2:111)

and we can solve for the critical radius

xc =
�wc

u2c
: (2:112)

Because the addition of a �nite sound speed only signi�cantly a�ects the wind in
the subsonic region, one can use the value of wc derived above in the zero sound
speed limit, and the associated velocity (evaluated at xc),

uc =
v1
a

s
1 � 1

xc
; (2:113)



39

to �nd that the critical radius in this approximation is exactly 1:5 times the stellar
radius:

xc = 1 +
�wc

(v1=a)2
= 1 +

1

2
: (2:114)

This comes very close to the actual values found by self-consistently integrating the
di�erential equation F1 = 0 and evaluating the optical depth (or velocity) at the
stellar surface (CAK).

Strictly speaking, when �nite sound speed terms are included in the CAK
equation of motion, the velocity never reaches an asymptotic terminal velocity v1,
and instead grows logarithmically without bound as r !1. This occurs because of
the sound speed term 2a2=r which dominates the expansion exterior to the \Parker
radius" (RP = GM�=2a2 � R�). More realistic models with a decreasing wind
temperature, however, negate the importance of this term at large radii, and a
reasonably constant terminal v1 is achieved.

Friend and Abbott (1986, hereafter FA), nearly simultaneously with PPK,
extended CAK's theoretical framework by including the uniformly-bright �nite disk

factor (see Section 2.2.4), gas pressure terms, and rotation in the equatorial plane.
Least squares �ts to the numerical results of FA give a similar velocity law,

vFA(r) = v1

�
1� R�

r

��
; (2:115)

but with � � 0:8, and

v1 � 2:2Vesc
�

1� �

�
Vesc

103 km s�1

�0:2 
1 � Veq

Vcrit

!0:35

; (2.116)

_MFA � 1

2
_MCAK

�
Vesc

103 km s�1

��0:3 
1 � Veq

Vcrit

!�0:43
; (2.117)

where the rotational dependence of _MFA was obtained by Bjorkman and Cassinelli
(1993) from FA's Figure 4 (see Chapter 4 for more information on rotating models).
The inclusion of the �nite disk factor decreases the radiation force near the base
of the wind; i.e., � ! 1=(1 + �) as r ! R�, because there are comparatively fewer
radially-directed photons near a source of large \horizontal" extent, but � ! 1
as r ! 1, because the star looks more like a point source as one recedes from
it. The mass loss rate, which is determined in the vicinity of the critical point,
is thus reduced. Because less material is accelerated into the outer parts of the
wind, where the force becomes close to the point-star force, the terminal velocity
increases. The inclusion of the �nite disk factor, then, causes roughly no change
in the �nal wind momentum _Mv1, but their individual values agree much better
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with the observations: for the same assumed � and k constants as above, FA's �t
formulae give, for the standard nonrotating � Puppis model, v1 = 2850 km s�1 and
_M = 3:0� 10�6M�yr�1.

In these models, the critical radius also becomes smaller, with xc � 1:02 �
1:05, but moves outward with increasing rotation rate. Because xc is so close to the
stellar surface, Gayley, Owocki, & Cranmer (1995) found that it is reasonably safe
to assume a constant critical value for the �nite disk factor �c � 1=(1 + �), and
estimate the modi�ed mass loss rate as if �c were simply a constant multiplying k,
i.e.,

_MFD � �1=�c
_MCAK : (2:118)

For the above model of � Puppis, this factor reduces the CAK mass loss rate to
2:7� 10�6M�yr�1.

Note that while the mass loss rate is determined at the critical point, very
close to the star, v1 is determined e�ectively at in�nite radius (because it is \built
up" cumulatively, once the mass 
ux is known that can be driven to in�nity). As-
suming that the radial velocity obeys a \beta law" at large radii,

vr(r) = v1

�
1� R�

r

��
;

@vr
@r

=
�v1R�

r2

�
1 � R�

r

���1
; (2:119)

we can substitute this back into the zero-sound speed equation of motion and take
the limit r ! 1. At large radii, we can ignore the �nite disk factor (because the
star appears as a point source) and write eq. (2.105) in this limit as

U2 + 1 � �� CU2� = 0 ; (2:120)

where U � (v1=Vesc)(2�)1=2 and Vesc � (2GM�=R�)1=2. Thus, if _M is estimated as
above, the above algebraic equation can be solved (numerically, if � 6= 0:5) for U .
The weak dependence in U on the unknown value of � is a minor disadvantage, but
it only results in a 10{20% uncertainty in the �nal value of v1.

For � close to 0.5 we can Taylor-expand the slowly-varying function U2�

about a constant U0:

U2� = U2�
0 + 2� (U � U0)U

2��1
0 + � � � (2.121)

� U2�
0 [(1� 2�) + 2� (U=U0)] : (2.122)

If we take U0 = 1,

U � �C �
p
�2C2 � 2�C � 1 + � + C � 2�C ; (2:123)

and the positive solution is the physically realistic one. Note, however, that the
exact solution to the transcendental equation (2.120) is more accurate, and this
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Taylor expansion is presented only to illustrate how U is approximately dependent
on � and C in this analysis. However, eq. (2.123) does illustrate the fact that, for _M
too large, or C too small, there will be no steady state solutions driven to in�nity.
In fact, the minimum value of C (found by setting the terms under the square root
to zero) is remarkably close (within � 2% for � = 0:5{0.7) to the critical point-star
value of C found above (eq. [2.107]). For the standard nonrotating � Puppis model,
eq. (2.120) is solved by v1 = 2688 km s�1 (if we assume � = 0:8), and the above
expansion yields v1 � 2374 km s�1.

More recent sets of semi-analytic models have provided better, but more
complex �tting formulae for v1, _M , and � of O and B stars. PPK computed grids
of models taking into account the �nite disk factor, gas pressure terms, and a line
force dependent on the state of ionization of the wind. They �t closed-form scaling
relations to v1 and _M , but the equations are too complex to be reproduced here.
Of interest, however, is a �t for the exponent � for models with Te� in the range
20000{50000 K,

� � 0:97� + 0:032
�

Vesc

500 km s�1

�
+
0:008

�
; (2:124)

where � is the exponent in the line force modi�ed to take varying stages of ionization
into account (see Section 2.2.5). Kudritzki et al. (1989) and Villata (1992) have
built up more complex, but more robust expressions for v1 and _M . The detailed
�nite disk and ionization correction factors are modeled approximately as functions
of radius only, so that the implicit di�erential equation of motion can be solved
\graphically" (i.e., with numerical root-�nding techniques) as an algebraic equation
in x, u, and w. Speci�cally, the Kudritzki et al. (1989) \cooking recipe" gives
v1 = 2649 km s�1 and _M = 3:8 � 10�6M�yr�1 for the standard � Puppis model
star.

2.3.3 Numerical Wind Models

The one-dimensional CAK equation of motion (eq. [2.91]) can be solved nu-
merically in several ways. Here we discuss two such solution methods: (1) the
\modi�ed CAK" (mCAK) approach, which iteratively locates the critical point and
integrates upward and downward from it in radius, and (2) full time-dependent
hydrodynamics (using the piecewise parabolic code VH-1) which evolves an approx-
imate initial condition to �nd possible steady end-states.

The mCAK method �rst requires the critical values of xc, uc, wc, and C to
be found, as discussed above. By starting from an assumed critical radius xc and,
e.g., FA's empirical velocity law �t as an initial guess, we use the Newton-Raphson
method of �nding roots of the nonlinear system of equations F1 = F2 = F3 = 0
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to evaluate uc, wc, and C. The fact that the wind equation itself (F1 = 0) can
be algebraically solved for C allows us to collapse the nonlinear search space from
three to two dimensions. After substituting this value of C into the singularity and
regularity equations, the Newton-Raphson correction equation

0
B@ @F2=@u @F2=@w

@F3=@u @F3=@w

1
CA
0
B@ �u

�w

1
CA =

0
B@ �F2

�F3

1
CA (2:125)

is easily solved for the incremental corrections to uc and wc (�u and �w). Various
\acceleration" techniques can be used to improve the convergence of this procedure,
(see, e.g., Press et al. 1989), but a good starting guess is of primary importance to
the rapid convergence of a solution.

With all dynamical variables determined at the critical point, one can inte-
grate inwards and outwards by numerically solving eq. (2.91) for w, and thus du=dx,
and stepping up and down in x with a numerical integration routine. In most of the
wind, two solution branches for w exist, and the critical point is the place where
the wind switches from one branch to the other. For x < xc, the lower of the two
values of w (w < wc) is the correct solution, and for x > xc, the higher of the two
values of w (w > wc) is the correct solution.

Figure 2.2 shows the resulting mCAK singular locus, critical point, and ve-
locity law for the standard � Puppis model star, assuming a uniformly-bright �nite
disk factor. Only the near-star wind is shown to illustrate the grazing of the singular
locus at the critical point. Also shown is the \quasi-static" exponential velocity law
which is the limiting case for the deep subsonic wind (vr � a). In this region, the
radial momentum equation simpli�es to the equation of hydrostatic equilibrium

@P

@r
= �� ge� = �� GM�(1 � �)

r2
; (2:126)

which is solved for an isothermal medium by the exponentially decreasing density,

�(r) = �0 exp [�(r �R�)=H�] ; (2:127)

where H� � a2=ge� is the density scale height. The subsonic radial velocity is thus
given by the mass continuity equation, and

vr(r) =

 
_M

4�R2
��0

!
exp [+(r �R�)=H�] : (2:128)

Of course, as the wind accelerates past the sonic point, the density no longer drops
exponentially, but approaches a 1=r2 power law as vr ! v1.
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Figure 2.2: Solution topology for the mCAKmodel of � Puppis. The shaded region
contains no solutions to the equation of motion, and is bounded by the
singular locus of one solution. Also shown are the numerical velocity
law (thick solid line), the subsonic exponential approximation for the
velocity (dashed line), and the sound speed of the gas (dotted line).
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Table 2.1 and Figure 2.3 illustrate the e�ect of varying the line-driving con-
stants �, k, and � on the resulting wind solutions. Note that varying k has absolutely
no e�ect on the velocity law vr(r), but only on the mass loss rate _M . This can be
seen in the zero sound speed solutions, and by the fact that the critical value of the
constant C (which contains k and _M) itself depends only on �, �, and the assumed
�nite disk factor. Note also that, as far as the velocity law (v1 and �e�) is con-
cerned, the exponent � acts as a \negative �," and v1 and �e� depend mainly on
the quantity �� � (see Kudritzki et al. 1989). This trend does not extend to _M and
the location of the critical point xc, however, because the N �

11 factor in the radiative
force is present in the de�nition of C as an e�ective \radially-dependent k."

The e�ective beta exponent �e� listed in Table 2.1 and plotted in Figure 2.3
is de�ned using the parameterized velocity law (eq. [2.119]) as

�e�(r) =
�
r

R�

� 1
�
r

vr

@vr
@r

; (2:129)

and is a convenient measure of the wind's acceleration. We evaluate �e� at r = 2R�,
which is a canonical median wind location, close to the points where vr � v1=2 and
� = 0 (isotropic expansion) in most wind models. At this point, �e� is expressible
as

�e� =
log[vr(r = 2R�)=v1]

log(1=2)
: (2:130)

Next we apply a time-dependent numerical hydrodynamics code to the prob-
lem of a radiatively driven wind. By including time dependence (in the @=@t terms
previously ignored by the mCAK analysis) we introduce the possibility of �nding
variable or discontinuous solutions to the wind equations, and we also become able
to assess the stability of steady-state solutions. The numerical code, VH-1, was de-
veloped by J. M. Blondin and colleagues at the University of Virginia, and uses the
piecewise parabolic method (PPM) algorithm developed by Collela & Woodward
(1984). VH-1 solves the Lagrangian forms of the equations of hydrodynamics in the

uid rest frame, and remaps conserved quantities onto an Eulerian grid at each time
step.

In its most general form, VH-1 solves the three-dimensional equations of mass,
momentum, and energy conservation (eqs. [2.1]{[2.3]) in an arbitrary coordinate
system, but here we examine a one-dimensional spherically symmetric geometry.
Also, in all models computed here the energy conservation is dominated by rapid
radiative processes, which keep the gas very nearly isothermal with a constant wind
temperature T equal to the stellar e�ective temperature Te�. We use a perfect
gas law equation of state to evaluate the pressure P . The radiative force due to
continuum and line processes is computed as in the mCAK method above, with
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Figure 2.3: Parameter study for various mCAK wind models. Shown are the
terminal velocity, mass loss rate, critical radius, and e�ective beta
exponent. The solid line represents models with � = 0 (thus plotting
� as the independent variable), and the dashed line represents models
with � = 0:6 (thus plotting [0:6� �] as the independent variable).
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Table 2.1: Parameter Study for mCAK Standard Model

� k � v1 (km s�1) _M (M�yr�1) xc �e�

Varying mCAK �

0.4625 0.15 0.00 1702.74 6.19453 �10�7 1.032877 0.67761
0.4750 0.15 0.00 1773.16 7.38506 �10�7 1.032334 0.68101
0.5000 0.15 0.00 1926.19 1.02630 �10�6 1.031311 0.68847
0.5500 0.15 0.00 2294.36 1.83761 �10�6 1.029477 0.70658
0.6000 0.15 0.00 2782.85 3.03821 �10�6 1.027855 0.73009
0.6500 0.15 0.00 3469.08 4.72661 �10�6 1.026383 0.76123
0.7000 0.15 0.00 4509.55 7.01519 �10�6 1.025009 0.80386
0.7500 0.15 0.00 6267.86 1.00384 �10�5 1.023691 0.86517
0.8000 0.15 0.00 9780.13 1.39673 �10�5 1.022387 0.96012

Varying mCAK k

0.6000 0.10 0.00 2782.85 1.54573 �10�6 1.027855 0.73009
0.6000 0.15 0.00 2782.85 3.03821 �10�6 1.027855 0.73009
0.6000 0.20 0.00 2782.85 4.90737 �10�6 1.027855 0.73009

Varying mCAK �

0.6000 0.15 0.00 2782.85 3.03821 �10�6 1.027855 0.73009
0.6000 0.15 0.05 2328.37 3.98692 �10�6 1.036940 0.70591
0.6000 0.15 0.10 1978.48 5.46630 �10�6 1.050246 0.68255
0.6000 0.15 0.15 1698.05 7.96968 �10�6 1.068636 0.65807
0.6000 0.15 0.20 1463.43 1.26802 �10�5 1.093625 0.62929
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the assumption of a uniformly-bright �nite-disk factor and a power law ensemble of
spectral lines de�ned by k, �, and �.

We specify the boundary conditions in our numerical method in two phantom
zones beyond each edge of the grid. At the outer radial boundary, the wind is
invariably supersonic outward, and so we set the 
ow variables in the outer phantom
zones by a simple constant-gradient extrapolation. The lower radial boundary of the
wind is somewhat more problematic, and we use the boundary conditions described
by Owocki et al. (1994): constant-slope extrapolation for vr, rigid rotation for v�,
and a �xed base density �B. Because the mass loss rates of line-driven winds are
determined from the equations of motion alone, we are able to specify an appropriate
\photospheric" density that yields a stable, subsonic boundary out
ow (see also
Owocki, Castor, & Rybicki 1988). For our standard � Puppis model star, we choose
a subsonic base density �B = 6�10�11 g cm�3, and we specify the 
ow variables on a
�xed radial mesh with 200 zones, from R� to 30R�. The zone spacing is concentrated
near the stellar base where the 
ow gradients are largest; at the base, �r = 0:002R�

(which resolves the density scale height H� � [a=Vesc]2R�), and it increases by 3%
per zone out to a maximum of �r = 0:82R� at the outer boundary.

This prescribed model has been implemented for various sets of stellar and
wind parameters in this dissertation, and the hydrodynamics usually \settles" ra-
pidly to a steady-state solution that agrees closely with the mCAK analysis. The
models are stepped forward explicitly in time at a �xed fraction (0.25) of the
Courant-Friedrichs-Lewy time step (see Press et al. 1989). The standard � Pup-
pis star was modeled with VH-1, starting from an initial condition given by the
mCAK velocity and density described above. The numerical wind solution relaxes
to a steady state on a time scale comparable to the dynamical 
ow time for gas to
radially advect across the computational grid,

td =
Z 30R�

r=R�

dr

vr(r)
� 2 � 105 s : (2:131)

Although a rigorous terminal velocity (at r!1) cannot be computed for a model
on a �nite numerical grid, the dynamical variables at the outer radial grid zone
are su�cient to compare with similar values from the mCAK analysis. The ratio

of the VH-1 velocity and density to their corresponding mCAK values, for the �
Puppis model at 30R�, are 1.0191 and 0.9515, respectively. Surprisingly, the major
cause of these small di�erences at large radii probably is due to the slightly di�erent
treatments of the subsonic lower boundary.
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2.4 An Overview of Non-Sobolev Wind Models

Although the Sobolev approach is used for all multidimensional and time
dependent wind models in this dissertation, it is important to understand its lim-
its, and under what circumstances a more rigorous model of the radiation driving
becomes necessary. Also, the mCAK approximation of modeling the line ensemble
using the (k, �, �) distribution is another idealization that requires justi�cation and
scrutiny. Finally, the stability of the steady wind solutions to small perturbations
is an important issue to resolve because the consequences of wind instability are
potentially observable.

The primary research on extending the Sobolev and mCAK approximations
has been undertaken by the Munich stellar astrophysics group in the 1980s and
1990s. PPK compared wind models using the Sobolev approximation to those con-
structed using a more accurate radiative force computed in the comoving frame of
the 
ow, and found only negligible di�erences in the velocity laws and mass loss
rates of the resulting winds. Even though the Sobolev approximation strongly un-
derestimates the radiative force in the deeply subsonic wind (vr �< vth) because it
neglects di�use radiation, the overall magnitude of the radiative force, compared
to gas pressure and gravity, is small in this region. The mean end result, then, is
insensitive to the force computed there.

The mCAK line ensemble approximation was relaxed by Pauldrach (1987),
Pauldrach & Herrero (1988), and Pauldrach et al. (1990), who treated the full multi-
level non-LTE problem for tens of thousands of line transitions, as well as a detailed
continuum opacity containing bound-free and free-free opacity from dozens of ele-
ments. These models resulted in an improved comparison to observations of both
the overall v1 and _M values and the detailed pro�le shapes of individual lines.
In most cases, however, the wind dynamics can be characterized well by simply
modifying the k, �, and � force constants in the mCAK model based on this im-
proved radiative transfer. The existence of overlapping lines, and thus the pres-
ence of multiple scattering of photons, has been treated in both a statistical manner
(Friend & Castor 1983; Gayley et al. 1995) and by using detailed line-list and Monte
Carlo radiative-transfer computations (Abbott & Lucy 1985; Puls 1987; Lucy & Ab-
bott 1993; Springmann 1994). Although the dynamical properties of winds can be
strongly a�ected when multiple scattering is important (see, e.g., eq. [2.52]), under
certain approximations this e�ect can be treated as a simple \force multiplier" akin
to the �nite disk factor (Gayley et al. 1995).

Despite the above complications in the radiative transfer, then, a suitably
modi�ed version of the Sobolev/mCAK approach seems well-suited to modeling
at least the mean dynamical properties of winds around hot stars. However, it
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has been suspected since the work of Milne (1926) that the radiative force arising
from spectral line opacity may be highly unstable to small perturbations. Lucy &
Solomon (1970) noted that because the wind is optically thick in the driving lines,
the majority of the force comes from photons within a thermal speed of the blue
edge of each line. If a given wind parcel is perturbed slightly to a higher velocity, the
blue edge shifts to shorter wavelengths (in the star's frame), where it sees additional
unshadowed photons which can further accelerate the parcel, thus blueshifting the
line pro�le even more, and so on.

This instability was con�rmed by MacGregor, Hartmann, & Raymond (1979)
and Carlberg (1980), who performed linear perturbation analyses on the line force
and assumed that the most important e�ect was the Doppler shift associated with
the perturbed velocity. This work thus implicitly assumed that perturbations were
optically thin, since associated velocity changes in the optical depth (eq. [2.26]) were
neglected. However, a similar linearized analysis by Abbott (1980), which applied
the Sobolev approximation to both the perturbation and the mean state, came to the
opposite conclusion that line-driven winds are stable to small perturbations. In fact,
Abbott (1980) found that such perturbations propagate as dispersionless \radiative-
acoustic waves" at a phase speed which is a function of the mean mCAK-like force
(see Chapter 7).

This apparent contradiction was resolved by Owocki & Rybicki (1984), who
found that the instability depended sensitively on the length scale of the perturba-
tion, and can be approximated by the \bridging law:"

�grad
grad,0

� �v

vth

 
ik

2=LSob + ik

!
; (2:132)

where �grad is the �rst order force response to a velocity perturbation of the form
�v / exp(ikr). In the limit of a large-scale perturbation (k � 1=LSob), the Sobolev
approximation is valid everywhere, and Abbott's (1980) marginally stable wave
result of �grad / i �v applies. In the short-wavelength limit (k � 1=LSob), the force
and velocity perturbations are proportional, �grad / �v, which is equivalent to the
highly unstable optically-thin result of MacGregor et al. (1979) and Carlberg (1980).

Despite a great deal of subsequent research, this central conclusion of instabil-
ity to small-scale perturbations remains. Lucy (1984) and Owocki & Rybicki (1985)
investigated the e�ect of the di�use radiation �eld on the instability, and found that
it can be greatly reduced or even canceled near the stellar surface, but not in most of
the supersonic wind. Rybicki, Owocki, & Castor (1990) extended this analysis into
three dimensions and found that horizontal perturbations are more strongly damped
than radial perturbations. Owocki & Zank (1991) discussed an e�ective \radiative
viscosity" which arises from asymmetries in the di�use radiation �eld, and how this
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e�ect may help to suppress some of the intrinsic wind instability. Indeed, Gayley &
Owocki (1995) found that for Wolf-Rayet winds, where the radiation is highly dif-
fuse and photons multiply scatter, the growth rate of the instability is signi�cantly
smaller than for O and B stars (but still large enough for small perturbations to
grow several orders of magnitude).

Owocki, Castor, & Rybicki (1988, hereafter OCR) performed the �rst non-

linear hydrodynamic calculations of unstable wind structure, and found that small
perturbations rapidly grow into reverse shocks which separate high-speed rarefac-
tions from slower, higher-density compressions. These models contained only the
direct, pure-absorption radiative force, however. The e�ect of the scattered radia-
tion �eld has been included by Owocki (1991, 1992) and Feldmeier (1995) via the
\smooth source function" (SSF) approximation, which contains a nonlinear gener-
alization of the Lucy (1984) line-drag and Owocki & Zank (1991) radiative viscosity
e�ects. The SSF method does not compute the di�use force arising from gradients
in the perturbed source function, and Owocki & Puls (1996) have subsequently in-
troduced the \escape integral source function" (EISF) method in order to better
model the complex hydrodynamic phenomena which may result from these di�use
forces. The nonlinear structure in the supersonic wind, though, still appears to be
dominated by stochastic reverse shocks, and the mean dynamical properties such as
v1 and _M appear to be relatively una�ected by the small-scale instability.


