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ABSTRACT

The hottest and most massive stars (spectral types O, B, Wolf-Rayet) have
strong stellar winds that are believed to be driven by line scattering of the star’s
continuum radiation field. The atmospheres and winds of many hot stars exhibit
the effects of rapid rotation, pulsation, and possibly surface magnetic fields, inferred
from observations of ultraviolet spectral lines and polarization. The complex time
variability in these observations is not yet well understood. The purpose of this dis-
sertation is to model the dynamics of winds around rotating hot stars and synthesize
theoretical observational diagnostics to compare with actual data.

Before dealing with rotation, however, we derive the theory of radiative driv-
ing of stellar winds, and uncover several new useful aspects of the theory for spher-
ical, nonrotating stars. The presence of limb darkening of the stellar radiation is
found to be able to increase the mass flux M by 10-15% over standard models assum-
ing a uniformly-bright star, and the wind’s asymptotic terminal velocity v, should
decrease by the same amount. We also introduce a new approximation method
for estimating the terminal velocity, which is both conceptually simpler and more
physically transparent than existing approximation algorithms. Finally, from theo-
retical line profile modeling we find that observational determinations of v,, may be
underestimated by several hundred km s~ if unsaturated P Cygni lines are used.

Rotation affects a star by introducing centrifugal and Coriolis forces, decreas-
ing the effective gravity and making the star oblate. This in turn redistributes the
emerging radiative flux to preferentially heat the stellar poles, an effect known as
gravity darkening. Although previous models have computed the increase in equa-
torial mass flux due to the lower effective gravity there, none have incorporated
gravity darkening. We find that the brighter (darker) flux from the poles (equator)
has a much stronger impact on the mass flux, increasing (decreasing) the mass loss
and local wind density. This, in addition to the existence of nonradial radiation
forces from a rotating star, which tend to point latitudinally away from the equator
and azimuthally opposite the rotation, produces a net poleward deflection of wind
streamlines. This is contrary to the “wind compressed disk” model of Bjorkman

x1v
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and Cassinelli, and also seems incompatible with observational inferences of equa-
torial density enhancements in some systems. This work is ongoing, and we are
endeavoring to include all the relevant physics in hydrodynamical simulations.

We also dynamically model spectral-line time variability by inducing coro-
tating nonaxisymmetric structure in the equatorial plane of a hot-star wind. By
varying the radiation force over localized “star spots,” the wind develops fast and
slow streams which collide to form corotating interaction regions (CIRs) similar to
those in the solar wind. We synthesize P Cygni type line profiles for a stationary
observer, and find that “discrete absorption components” (DACs) accelerate slowly
through the profiles as complex nonlinear structures rotate in front of the star. We
also examine the photospheric origin of such variability, in a preliminary manner, by
deriving the theory of stellar pulsations, waves, and discontinuities. Although most
observed low-order pulsation modes are evanescently damped in the photosphere,
we find that the presence of an accelerating wind can allow waves of all frequen-
cies to propagate radially. We thus make a first attempt at outlining the possible
“photospheric connection” between interior and wind variability that observations
are beginning to confirm.



