

Coronagraphs on the Frontier: Connecting Astronomy, Solar Physics, & Plasma Physics

Steven R. Cranmer (CU Boulder, LASP)

Target: Solar Wind & CMEs

- Global fast & slow solar wind streams
- CMEs \rightarrow shocks & magnetic clouds

primary carriers (drivers!) of space weather

- The "coronal heating problem" sits at the root of our lack of understanding about how the Sun produces the wind & CMEs.
- How do we move forward?
- improved "theory"
- improved simulations
 improved observations

Target: Solar Wind & CMEs

- Global fast & slow solar wind streams
- CMEs \rightarrow shocks & magnetic clouds

primary carriers (drivers!) of space weather

- The "coronal heating problem" sits at the root of our lack of understanding about how the Sun produces the wind & CMEs.
- How do we move forward?
- improved "theory"
- improved simulations
- improved observations

Dana Longcope, Montana State Univ.

Steve Cranmer, Univ. Colorado

Enrico Landi, Univ. Michigan

magnetic field: "lower boundary?"

... is connected to ...

thermal environment of corona

data assimilation?

What do coronagraphs give us?

- Coronagraphs enable monitoring of the "global" environment of wind/CME production:
 - Solar-pointing telescopes can't see to large radii (solar-disk glare, PSF wings, detector dynamic range)
 - *In situ* probes can't explore near the Sun's surface (even Solar Probe won't see main wind acceleration)
 - Natural eclipses are too infrequent & short-lived

What do coronagraphs give us?

- Coronagraphs enable monitoring of the "global" environment of wind/CME production:
 - Solar-pointing telescopes can't see to large radii (solar-disk glare, PSF wings, detector dynamic range)
 - *In situ* probes can't explore near the Sun's surface (even Solar Probe won't see main wind acceleration)
 - Natural eclipses are too infrequent & short-lived

velocity density temperature(s) chemical abundances MHD wave properties magnetic topology shock physics $T_p \neq T_e \neq T_{ion}$

Discovery science...

- High sensitivity/cadence allows fine-grained kinematic feature tracking (e.g., MHD dynamics).
- Emission-line spectroscopy allows kinetic, non-equilibrium physics to be probed!

Quo vadimus, coronagraphia?

Challenges:

• They're complex; probably require more optical design expertise "per square foot" of observatory space than most (?) other types of telescopes.

Ground-based:

- NSO's DKIST (Cryo-NIRSP) will probe off-limb micro-structure (0.0001 to 0.01 R_{sun}).
- HAO's next-gen plans (UCoMP, COSMO, K-Cor) would provide huge improvements in our knowledge of dynamics at "coronal flux tube" scales (0.01 to 0.3 *R*_{sun}).
- Exploratory studies of balloon-borne "starshades" may yield new concepts that could simultaneously span scales from 0.001 to >1 R_{sun} (M. Knölker & W. Cash).

Space-based:

- Going to space is probably needed to explore heights > 5 to $10 R_{sun}$
- It's a sin there's no LASCO replacement in orbit *now*.
- ESA's Solar Orbiter will have some interesting coronagraphic capabilities.
- There will be some strong submissions to this summer's NASA SMEX AO.