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Massive stars have strong stellar winds that exhibit variability on time scales 
ranging from hours to years. Many classes of these stars are also seen, via 
photometric or line-profile variability, to pulsate radially or nonradially. It has 
been suspected for some time that these oscillations can induce periodic 
modulations in the surrounding stellar wind and produce observational 
signatures in line profiles or clumping effects in other diagnostics. 

The goal of this work is to investigate the detailed response of a line-driven 
wind to a given photospheric pulsation mode and amplitude. We ignore the 
short-wavelength radiative instability and utilize the Sobolev approximation, but 
we use a complete form of the momentum equation with finite-disk irradiation 
and finite gas pressure effects. For large-scale perturbations appropriate for the 
Sobolev approximation, though, the standard WKB theory of stable “Abbott 
waves” is found to be inapplicable. The long periods corresponding to stellar 
pulsation modes (hours to days) excite wavelengths in the stellar wind that are 
large compared with the macroscopic scale heights. Thus, both non-WKB 
analytic techniques and numerical simulations are employed to study the 
evolution of fluctuations in the accelerating stellar wind. 

This poster describes models computed with 1D (radial) isothermal motions 
only. However, even this simple case produces a quite surprising complexity in 
the phases and amplitudes of velocity and density, as well as in the distribution 
of outward/inward propagating waves through the wind. 
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Ø All models shown below are perturbations of a time-steady line-driven wind 
model computed in the Sobolev (1957) approximation. The basic CAK theory 
(Castor et al. 1975) is modified with a standard finite-disk correction factor. 

Ø We model a B0 V star: M* = 17.5 M¤, R* = 7.7 R¤, and log (L*/L¤) = 4.64. 
Ø We model an isothermal wind:  T = 24,000 K   (sound speed  a ≈ 18 km/s). 

Ø In the Sun, convection-driven p-modes give rise to MHD waves that 
propagate out into the solar wind (e.g., Cranmer & van Ballegooijen 2005). 

Ø Massive stars do not pulsate strongly enough to directly eject mass (like Miras 
do?), but there is much circumstantial evidence for a “photospheric 
connection” between stellar and wind variability (Fullerton & Kaper 1995)... 
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Ø For low frequencies typical of hot-star pulsations, the “classical” theory of 
Abbott waves is inapplicable; non-WKB methods must be used. 

Ø The low-frequency velocity amplitude (at r >> R*) is much higher than 
expected based on ideas of WKB “wave action conservation.” 

Ø Numerical models verify non-WKB theory for small amplitudes, but when 
increased, the amplitudes seem to saturate at low levels. 

Ø How do VH-1 models of long-periods (> 10 hr) & large-amplitudes behave? 
Ø Do the waves affect the mean flow properties (V∞ and M ) ? 
Ø Will inclusion of pulsation-related L* fluctuations affect perturbed gCAK ? 
Ø How does the theory generalize to horizontal motions (from NRPs)? Can 

they affect the circumstellar environment (e.g., Owocki & Cranmer 2002)? 
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Ø Not much theoretical work has been done to study pulsation leakage into the 
circumstellar gas (Castor 1986; Cranmer 1996; Townsend 2000a,b, 2007). 

Ø Are the biggest wind clumps driven by pulsations?  Is angular momentum in 
Be-star disks transported by “leaked” pulsational wave motion? 

Ø CAK α=0.5, k=0.25, no δ factor. 
M=3 x 10–8 M¤/yr,  V∞=2100 km/s. 

Ø Justification for use of the Sobolev 
approximation: We can’t properly 
understand departures from Sobolev 
until we understand Sobolev! 

Ø Ignoring the (slowly varying) finite 
disk factor, the line force depends 
on: 

. 

Ø Let us separate the velocity (v = v0 + v1) and density (ρ = ρ0 + ρ1) into steady-
state “0th order” and small-amplitude “1st order” perturbations. The 1st order 
momentum conservation equation depends on the perturbed line force: 

The “Abbott speed” UA density perturbations are 
often neglected (which is okay 

for high-freq. waves...) 

Ø “Steeper” velocity gradients give rise to stronger line forces. Strangely, a 
sinusoidal oscillation in v1 wants to propagate inwards!  (Abbott 1980)  

Near the star, UA/a ≈ (v0/a)2α–1 

Far from the star, UA ≈ α v0  >> a 

later... 

v v 
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Ø Assume v1 and ρ1∝ exp (iωt – ikr), where frequency ω and wavenumber k are 
locally constant.  Abbott (1980) derived the dispersion relation for ω(k), where 
the inertial-frame phase speed and amplitudes go as: 

Ø To model lower frequencies, let us discard the idea of wavenumbers and solve 
directly for radial oscillation patterns, where v1 and ρ1∝ exp (iωt + iΨv,ρ(r)). 

Ø There are now 4 coupled ODEs (2 for amplitudes, 2 for Ψ‘s) that all become 
singular at the mCAK “critcial point.”  We must integrate numerically up and 
down from this point for each frequency (see, e.g., Heinemann & Olbert 1980; 
Grappin et al. 1997; Cranmer & van Ballegooijen 2005). 

Ø This method is valid for arbitrarily low frequencies (i.e., long periods!) 
Ø To remain self-consistent, we need to keep the density perturbations to gCAK, 

which are important when 

Ø In the supersonic wind, the LHS ≈ αv0(∂v0/∂r), the RHS ≈ αωv0 .  Thus, the 
density perturbation is important when ω < ∂v0/∂r, i.e., when the local effective 
wavelength λ exceeds the scale height.  This is the same as the “non-WKB” 
criterion that defines where the traditional Abbott-mode analysis is valid! 

Ø This approximation is valid only 
when wavelengths (λ = 2π/k)  are: 

Ø Small compared to macroscopic 
scale heights (v0 / (∂v0/∂r)), but 

Ø Large compared to the Sobolev 
length (Lsob ≈ vth / (∂v0/∂r)); i.e., 
stable against the radiative 
instability (Owocki & Rybicki 
1984, 1985; Owocki 2004). 

This is a restrictively small range! 

Amplitudes:   (setting basal density fluct. to 1%) Phase speeds:   Vph = –ω / (∂Ψ/∂r)     (unequal for v1 and ρ1)  
Ø High-freq. waves behave like outward (C+) Abbott modes. 
Ø Low-freq. waves have some properties of “reflected” inward 

(C–) Abbott modes  (at least above the critical point). 
Ø We can quantify the degree of local reflection by constructing 

“Elsasser-like” variables: 

Reflection Coefficients: 

Ø Y– is zero for outward modes;  Y+ is zero for inward modes. 
Their ratio gives a local “reflection coefficient:” 

Ø We use the VH-1 hydrodynamics code (Blondin & Lufkin 1993), modified with the mCAK radiation 
force, to verify the validity of the non-WKB results (for small amplitudes) and to extend the models 
to larger, nonlinear amplitudes. 

C– ≈ –UA 

Ø The non-WKB method is generally validated for low basal amplitudes (10% above). There is 
similar agreement for the density amplitudes and phase speeds. 
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Nonlinear amplitudes give 
rise to some degree of wave 
saturation, and also to 
“Abbott kinks” (see, e.g., 
Cranmer & Owocki 1996; 
Feldmeier & Shlosman 
2002; Owocki 2004): 

Questions that still need to be addressed: 

. 


