Predictions for Dusty Mass Loss from Asteroids during Close Encounters with Solar Probe Plus

Steven R. Cranmer University of Colorado Boulder, LASP

Paper: http://arXiv.org/abs/1606.01785

Predictions for Dusty Mass Loss during Close Encounters with Solar Probe Plus

oss from Asteroids

Steven R. Cranmer University of Colorado Boulder, LASP

Introduction

- The goal of this work is to call the community's attention to the likelihood that the **Solar Probe Plus (SPP)** spacecraft will be well-positioned to observe mass loss from Mercury-crossing asteroids in the inner heliosphere.
- Specifically, we predict that there will be several times during the SPP mission when its WISPR instrument will be able to detect visible-light emission from the asteroids themselves and (in a few cases) from associated coma-like dust clouds that may subtend almost a degree of angular width on the sky.
- These observations could fill in a large gap between the properties of several previously distinct populations:

and help complete the census of primordial solar system material.

Solar Probe Plus

- Solar Probe Plus (SPP) will be the first spacecraft to fly into the Sun's corona (Fox et al. 2015).
- SPP's main science goal is to determine the structure & dynamics of the coronal magnetic field, understand how the solar corona & wind are heated & accelerated, and determine what processes accelerate energetic particles.

- In addition to a suite of *in situ* plasma & field instruments, the **Wide-field Imager for SPP** (WISPR, Vourlidas et al. 2015) will observe visible-light photons over large fields of view.
- The primary goal of WISPR is to observe K-corona emission from Thomson-scattered electrons and F-corona emission from dust, but it will also search for sungrazing comets and putative Vulcanoids (see, e.g., Steffl et al. 2013).

Solar Probe Plus

- Planned Launch: July 30, 2018.
- SPP will use multiple gravity-assist maneuvers with Venus to enter the inner heliosphere within the first year of the mission.
- Minimum perihelion distance: 0.0459 AU (9.8 solar radii!)
- WISPR is a follow-on of the SECCHI instrument suite from *STEREO*, which was used to detect comet-like tail emission from active asteroid 3200 Phaethon at its perihelion (Jewitt et al. 2013).

Asteroid selection

- As of late 2015, there are $\begin{cases} 6\\63\\222 \end{cases}$ known asteroids with perihelia $\begin{cases} \leq 0.1 \text{ AU} \\ \leq 0.2 \text{ AU} \\ \leq 0.3 \text{ AU} \end{cases}$
- To produce our final database of **97 asteroids**, we selected all 63 with $q \le 0.2$ AU, and only those between 0.2 and 0.3 AU with visible magnitudes H < 18.
- Dimmer asteroids between 0.2 and 0.3 AU (and all others with q > 0.3 AU) were found to be unable to produce large dust coma/tail strucures.
- Asteroid ephemerides were obtained from NASA/JPL's Horizons database: http://ssd.jpl.nasa.gov/horizons.cgi
- SPP's planned trajectory was obtained from the SPP team (thanks to Kelly Korreck and Martha Kusterer).
- On next page, the list shows minimum distances (d_{\min}) between each asteroid and SPP, and the asteroid heliocentric distance (r_{a}) at times of closest encounter.

List of selected asteroids

Number	Name	<i>q</i> [AU]	е	H [mag]	d_{\min} [AU]	$r_a(d_{\min})$ [AU]	Number	
_	2005 HC4	0.07066	0.96119	20.7	0.10941	0.11916		201
_	2008 FF5	0.07914	0.96539	23.1	0.28942	0.46209	1566	Ica
_	2015 EV	0.08003	0.96100	22.5	0.64377	0.07659	89958	200
394130	2006 HY51	0.08100	0.96884	17.2	0.32687	0.41537		200
137924	2000 BD19	0.09199	0.89505	17.2	0.07756	0.10245	5786	Tal
374158	2004 UL	0.09283	0.92670	18.8	0.16533	0.22027		200
394392	2007 EP88	0.09558	0.88584	18.5	0.12213	0.21280	387505	190
_	2011 KE	0.10013	0.95502	19.8	0.15917	0.39329		200
_	2008 HW1	0.10171	0.96061	17.4	0.55013	0.25181	_	201
_	2015 HG	0.10472	0.95025	21.0	0.35597	0.13877		201
_	2012 US68	0.10566	0.95776	18.3	0.15636	0.46061		201
_	2011 XA3	0.10859	0.92597	20.5	0.26899	0.39000		100
399457	2002 PD43	0.11031	0.95603	19.1	0.41708	0.48005	152201	200
386454	2008 XM	0.11107	0.90913	20.0	0.13714	0.29387	120280	200
431760	2008 HE	0.11337	0.94993	18.1	0.21685	0.12394	159289	200
	2007 EB26	0.11573	0.78867	19.6	0.01372	0.20750	141070	195
276033	2002 AI129	0.11671	0.91488	18.7	0.36247	0.15895	1410/9	200
	2000 LK	0.11788	0.94590	18.4	0.54865	0.26888	143637	200
425755	2011 CP4	0.11813	0.87039	21.2	0.12991	0.24157	329915	200
	1995 CR	0 11931	0.86846	21.2	0.20231	0.23316	438116	200
_	2007 GT3	0.12088	0.93938	197	0.55496	0.12185	369296	200
_	2004 OX2	0.12498	0.90291	21.7	0.07061	0.69866	184990	200
_	2011 BT59	0.12450	0.94848	21.7	0.25844	0.14597		200
280227	2004 XX60	0.12057	0.79669	18.9	0.07934	0.13101		200
207227	2004 K100	0.13120	0.92577	22.0	0.05460	0.67427	137052	Tje
	2013 R0120 2007 PR10	0.13241	0.92577	20.7	0.21100	0.75243	225416	199
	2007 T K10	0.13561	0.09202	18.8	0.22618	0.73243	_	200
	2013 14 36	0.13750	0.94854	21.0	0.43304	0.58412	242643	200
	2013 JA50 2008 MG1	0.13886	0.94034	10.0	0.03170	0.90056	136874	199
	2003 MC1	0.13000	0.02678	20.7	0.04258	0.15407	40267	199
3200	2015 IIIII Phaethon	0.13901	0.88084	14.6	0.24292	0.26831		201
5200	2013 VC	0.14004	0.00304	21.3	0.63135	0.15442	_	200
_	2010 1687	0.14104	0.94547	10.1	0.03133	0.15442	331471	198
	2015 KP157	0.14820	0.94773	19.1	0.17604	0.57840		200
	2015 KI 157 2015 DU180	0.14820	0.91027	20.8	0.17004	0.37849	369452	201
_	2012 114 24	0.15228	0.92097	20.8	0.24979	0.18051	190119	200
_	2012 UA34 2005 EL 70	0.15803	0.00133	24.0	0.10750	0.35370	351370	200
155140	2005 LL70	0.15895	0.94022	17.3	0.10739	0.30308	164201	200
364136	2005 CD	0.16580	0.37224	20.2	0.00729	0.21205	385402	200
105140	2000 CJ 2000 NI 10	0.16727	0.75492	15.8	0.02520	0.21203	397237	200
105140	2000 NL10	0.10727	0.81704	10.6	0.23009	0.17701	253106	200
_	2011 WIN15	0.17265	0.03793	19.0	0.17400	0.17701	364877	200
202160	2015 WW	0.17400	0.91398	23.8	0.12274	0.25250		201
302109	2001 1D45 2005 DV24	0.17733	0.77742	19.9	0.12274	0.39088	231037	201
_	2003 KV 24 2008 EV 69	0.17803	0.001//	20.0	0.20295	0.73443	00007	100
1/1851	2000 E 1 08 2002 DM6	0.17055	0.73994	22.0	0.12525	0.17417	170502	200
267222	2002 FIND	0.1/933	0.05012	12.0	0.06021	0.30174	170502	200
207223	2001 DQ8	0.10100	0.90130	10.0	0.00021	0.10495	162260	100
250221	2015 AJ91 2002 BA21	0.1010/	0.92818	19.5	0.161/3	0.32410	102209	195
239221	2003 DA21	0.18550	0.83321	19.1	0.00899	0.23841	141525	200

Number	Name	<i>q</i> [AU]	е	H [mag]	d _{min} [AU]	$r_a(d_{\min})$ [AU]
	2011 YX62	0.18409	0.92823	23.0	0.26575	0.46486
1566	Icarus	0.18652	0.82696	16.9	0.21870	0.29748
89958	2002 LY45	0.18675	0.88625	17.0	0.14820	0.22125
_	2009 HU58	0.18686	0.90955	19.1	0.11882	0.34948
5786	Talos	0.18727	0.82684	17.1	0.32613	0.78989
_	2003 UW29	0.18899	0.83840	20.7	0.06178	0.35127
387505	1998 KN3	0.19537	0.87328	18.4	0.18166	0.20196
_	2007 MK6	0.19586	0.81879	19.9	0.29098	0.37447
_	2015 KJ122	0.19613	0.75026	22.0	0.06455	0.50995
_	2015 DZ53	0.19620	0.87013	20.8	0.40446	0.20443
_	2010 VA12	0.19875	0.84334	19.5	0.07376	0.22421
	1996 BT	0.19978	0.83500	23.0	0.10126	0.37595
153201	2000 WO107	0.19985	0.78072	19.3	0.19124	0.35397
139289	2001 KR1	0.19996	0.84123	17.6	0.02376	0.47075
66391	1999 KW4	0.20010	0.68846	16.5	0.12587	0.20703
141079	2001 XS30	0.20015	0.82815	17.7	0.03979	0.20640
143637	2003 LP6	0.20341	0.88352	16.3	0.31278	0.51759
329915	2005 MB	0.20411	0.79284	17.1	0.33105	0.54317
438116	2005 NX44	0.20495	0.90745	17.3	0.35076	0.81328
369296	2009 SU19	0.20935	0.89942	17.9	0.06908	0.26797
184990	2006 KE89	0.21144	0.79925	16.4	0.14092	0.52566
	2004 LG	0.21250	0.89714	18.0	0 39704	0.38711
_	2005 GL9	0.22226	0.89620	17.1	0.03307	0.22339
137052	Tielvar	0.23768	0.80955	16.9	0.08579	0.22000
225416	1999 YC	0.24099	0.83050	17.2	0.29616	0.31271
223410	2000 \$G8	0.24508	0.90066	17.2	0.59763	0.75514
242643	2005 NZ6	0.24500	0.86443	17.5	0.08031	0.81175
136874	1998 FH74	0.25390	0.88462	15.7	0.29403	0.29322
40267	1999 GI4	0.25550	0.80825	15.4	0.31560	0.25078
+0207	2011 WS2	0.25890	0.74356	17.2	0.16082	0.32279
	2011 W32	0.25350	0.72856	17.2	0.04606	0.46376
331471	1984 OV1	0.26348	0.89453	15.4	0.28198	0.40370
	2006 089	0.26379	0.00455	17.8	0.20190	0.35270
369452	2000 US7	0.26898	0.74267	17.0	0.32184	0.36409
100110	2010 LO14 2004 VA64	0.20090	0.89042	17.5	0.41024	0.37468
351370	2004 VA04	0.27510	0.89042	17.1	0.12769	0.27657
164201	2003 E I 2004 EC	0.27510	0.85054	17.2	0.12709	0.27037
385402	2004 EC	0.28038	0.85954	17.0	0.12414	0.26329
307737	2002 WZ2 2006 KZ112	0.28470	0.88604	16.7	0.47899	0.54597
252106	2000 KZ112	0.28545	0.88094	16.7	0.73651	0.66112
255100	2002 UK3	0.26349	0.79293	10.4	0.32039	0.00115
304877	2008 EM9 2014 MD26	0.29101	0.85155	17.5	0.08000	0.54927
221027	2014 MR20	0.29387	0.70595	17.8	0.12435	0.00948
231937	2001 FO32	0.29525	0.82044	17.7	0.20000	0.32020
9990/ 170502	1989 VA	0.29323	0.39408	17.9	0.24233	0.31057
170502	2003 WM7	0.29648	0.88027	17.2	0.20954	0.77615
160060	2010 KY12/	0.29686	0.88110	17.0	0.51914	0.30052
162269	1999 VO6	0.29734	0.73809	17.0	0.26966	0.34300
141525	2002 FV5	0.29916	0.72475	17.9	0.21795	0.33586

Asteroid physical properties

- Diameters range between 0.07 and 5 km (median: 0.89 km).
- Angular sizes (from WISPR) are < 0.1 arcsec, so the asteroids are definitely unresolved in WISPR's large (~1 arcmin) pixels.
- Apparent magnitudes (m_V) were converted into on-sky fluxes (F) and compared with expected zodiacal light background fluxes (F_Z).
- Previous work with SECCHI (DeForest et al. 2011) showed that faint signals of order $F/F_Z \approx 10^{-4}$ can be detected via sophisticated image processing.
- If WISPR is similar, 76 out of the 97 asteroids will be detectable.

A model of inner heliospheric mass loss

- Comets lose their "ices" (H₂O, CO, CO₂) via **sublimation**, but near-Sun asteroids have likely already lost these easily evaporated volatile surface layers.
- At *r* < 0.2 AU, equilibrium temperatures are high enough that "rocky" regolith layers (e.g., silicates, Fe/Mg-rich minerals, & carbonaceous chondrites) can sublimate!

 We evaluated sublimation rates Z for a number of expected rocky substances using thermal energy balance: solar radiation --> thermal re-radiation + sublimation

A model of inner heliospheric mass loss

- We still do not know the surface composition of active asteroids, so we decided to vary the chemical properties freely until finding agreement with the observed mass loss from Phaethon (Jewitt et al. 2013).
- Result: something with latent heat 204 kJ/mol, mean molecular weight 100 g/mol.
- Our paper's referee questioned our use of "ghost matter," but this was the same empirical procedure used by Sekanina (2003) to constrain the chemical properties of the (otherwise unknown!) material lost by sungrazing comets.
- The resulting properties appear to fall between atomic **sodium** ($L \approx 106$ kJ/mol) and **carbonaceous chondrites** ($L \approx 250$ to 350 kJ/mol), and may point to the existence of a heterogeneous mixture of multiple solid species on asteroid surfaces.
- Predicted gas mass loss rates for all 97 asteroids at d_{min}, also showing agreement with other comet data (C/2003 K7; Ciaravella et al. 2010).

Dusty coma production: theory

- Conjecture: both gas & dust (with a broad range of grain sizes) of the *same* substance is ejected simultaneously. Free parameter: dust/gas mass ratio *M*.
- This is different from the standard cometary scenario (where icy gas "drags out" silicate dust), but there are several analogous situations:
 - comets lose both gas-phase ice & larger "snows" (Protopapa et al. 2014);
 - ablating **meteors** lose fragments from nm "smoke" to cm "pebbles;"
 - near-star **exoplanets** may be disintegrating via gas & dust emission (Rappaport et al. 2012; van Lieshout et al. 2014).
- Given values of *M*, grain outflow speed, & grain size, we can predict the radial number density profile of dust grains surrounding a sublimating asteroid.
- Like above with the mass loss rate, we used Phaethon's observed tail size (Jewitt et al. 2013) to "calibrate" the parameters and predict observable ($F > 10^{-4} F_Z$) coma radii, expressed as impact parameter $b_{\rm coma}$

Dusty coma production: results

- Can SPP/WISPR resolve some of these predicted coma sizes? Yes!
- Converting b_{coma} to on-sky angular size θ_{coma} , we see several "events" for which the expected size is > several WISPR pixels.
- The paper gives a detailed tabular list of all 41 predicted events with $\theta_{\text{coma}} > 3$ arcmin.

• *Note:* to be conservative, we err on the side of <u>under</u>estimating θ_{coma} by using the "radius" numbers instead of "diameters."

Conclusions

Why do we care?

- Observations of dusty coma-like clouds around active asteroids at ~0.1 AU can put improved constraints on our knowledge about primordial solar system material in hot (i.e., seldom probed!) environments.
- Mass loss from solid bodies in the inner heliosphere also probes the smallscale turbulent dynamics of the solar wind (Brandt & Snow 2000; Huebner et al. 2007; Raymond et al. 2014).

Several things need improving:

- WISPR's field of view is occulted by SPP's heat shield & other structures, so it is not yet known if each predicted event would be observable.
- If SPP's launch date slips, the dates of mutual events need to be recalculated.
- Our spherical dust-coma model should be replaced by 3D coma/tail dynamics.

Our paper has been published online at *Earth, Moon, & Planets*. Preprint: http://arXiv.org/abs/1606.01785

References

C.H. Acton, Planet. Space Sci. 44, 65 (1996) J. Agarwal, D. Jewitt, H. Weaver et al., Astron. J. 151, 12 (2016) M.F. A'Hearn, R.L. Millis, D.G. Schleicher et al., Icarus 118, 223 (1995) C.W. Allen, Astrophysical Quantities, 3rd edn. (Athlone Press, London, 1973) B. Baldwin, Y. Sheaffer, J. Geophys. Res. 76, 4653 (1974) E.H. Beer, M. Podolak, D. Prialnik, Icarus 180, 473 (2006) A. Bemporad, S. Giordano, J.C. Raymond et al., Adv. Space Res. 56, 2288 (2015) D.A. Biesecker, P. Lamy, O.C.St Cyr et al., Icarus 157, 323 (2002) T. Bonev, K. Jockers, N. Karpov, Icarus 197, 183 (2008) J. Borovička, Z. Charvát, Astron. Astrophys. 507, 1015 (2009) E. Bowell, B. Hapke, D. Domingue et al., in Asteroids II, ed. by R. Binzel, T. Gehrels, M. Matthews (University of Arizona Press, Tucson, 1989), p. 524 J.C. Brandt, M. Snow, Icarus 148, 52 (2000) P. Brvans, W.D. Pesnell, Astrophys. J. 760, 18 (2012) H. Campins, M.S. Kelley, Y. Fernández et al., Earth Moon Planets 105, 159 (2009) C.F. Chyba, P.J. Thomas, K.J. Zahnle, Nature 361, 40 (1993) A. Ciaravella, J.C. Raymond, S. Giordano, Astrophys. J. 713, L69 (2010) M.R. Combi, Astron. J. 108, 304 (1994) C.E. DeForest, T.A. Howard, S.J. Tappin, Astrophys. J. 738, 103 (2011) M. Delbo, G. Libourel, J. Wilkerson et al., Nature 508, 233 (2014) V. Della Corte, A. Rotundi, M. Fulle et al., Astron. Astrophys. 583, A13 (2015) A.H. Delsemme, D.C. Miller, Planet. Space Sci. 19, 1229 (1971) E.M. Epifani, M. Dall'Ora, D. Perna et al., Mon. Not. R. Astron. Soc. 415, 3097 (2011) C.J. Eyles, R.A. Harrison, C.J. Davis et al., Solar Phys. 254, 387 (2009) F.P. Fanale, J.R. Salvail, Icarus 60, 476 (1984) F.P. Fanale, J.R. Salvail, Icarus 72, 535 (1987) M.J. Finson, R.F. Probstein, Astrophys. J. 154, 327 (1968) N.J. Fox, M.C. Velli, S.D. Bale et al., Space Sci. Rev. (2015). doi:10.1007/s11214-015-0211-6 M. Fulle, in Comets II, ed. by M. Festou, H. Keller, H. Weaver (University of Arizona Press, Tucson, 2004), p. 565 M. Fulle, F. Marzari, V. Della Corte et al., Astrophys. J. 821, 19 (2016) M. Fulle, V. Mennella, A. Rotundi et al., Astron. Astrophys. 276, 582 (1993) J.D. Giorgini, in New Challenges for Reference Systems and Numerical Standards in Astronomy, ed. by N. Capitaine (Observatory de Paris, Paris, 2011), p. 87 J.D. Giorgini, D.K. Yeomans, A.B. Chamberlin et al., Bull. Am. Astron. Soc. 28(3), 1158 (1996) O. Groussin, J. Licandro, J. Helbert et al., Exp. Astron. 41, 95 (2016) B. Gundlach, J. Blum, Astron. Astrophys. 589, A111 (2016) W.K. Hartmann, D.J. Tholen, K.J. Meech et al., Icarus 83, 1 (1990) L. Haser, Bull. Acad. R. Belg. 43, 740 (1957) F. Hörz, R. Bastien, J. Borg et al., Science 314, 1716 (2006) R.A. Howard, J.D. Moses, A. Vourlidas et al., Space Sci. Rev. 136, 67 (2008) H.H. Hsieh, D.C. Jewitt, Y.R. Fernández, Astron. J. 127, 2997 (2004) W.F. Huebner, Astron. Astrophys. 5, 286 (1970) W.F. Huebner, D.C. Boice, N.A. Schwadron, Adv. Space Res. 39, 413 (2007) D.W. Hughes, Planet. Space Sci. 48, 1 (2000) M. Ishiguro, Y. Sarugaku, D. Kuroda et al., Astrophys. J. 817, 77 (2016) P. Jenniskens, Earth Moon Planets 102, 505 (2008) D. Jewitt, Astron. J. 143, 66 (2012) D. Jewitt, Astron. J. 145, 133 (2013) D. Jewitt, H. Hsieh, J. Agarwal, in Asteroids IV, ed. by P. Michel, F. DeMeo, W. Bottke (University of Arizona Press, Tucson, 2015 in press), arXiv:1502.02361 D. Jewitt, J. Li, J. Agarwal, Astrophys. J. 771, L36 (2013) D. Jewitt, H. Weaver, M. Mutchler et al., Astrophys. J. 733, L4 (2011)

T. Kasuga, T. Yamamoto, H. Kimura et al., Astron. Astrophys. 453, L17 (2006)

- M.S. Kelley, D.J. Lindler, D. Bodewits et al., Icarus 222, 634 (2013) M.S. Kelley, D.J. Lindler, D. Bodewits et al., Icarus 262, 187 (2015) J. Kissel, F.R. Krueger, Nature 326, 755 (1987) L. Kolokolova, H. Kimura, N. Kiselev et al., Astron. Astrophys. 463, 1189 (2007) K.A. Kretke, H.F. Levison, Icarus 262, 9 (2015) S.M. Kwon, S.S. Hong, J.L. Weinberg, New Astron. 10, 91 (2004) C.-I. Lagerkvist, P. Magnusson, Astron. Astrophys. Suppl. 86, 119 (1990) C. Leinert, Space Sci. Rev. 18, 281 (1975) A. Malhotra, J.D. Mathews, J. Geophys. Res. 116, A04316 (2011) I. Mann, A. Czechowski, Astrophys. J. 621, L73 (2005) I. Mann, H. Kimura, D.A. Biesecker et al., Space Sci. Rev. 110, 269 (2004) B.G. Marsden, Ann. Rev. Astron. Astrophys. 43, 75 (2005) T. Matsakos, A. Uribe, A. Königl, Astron. Astrophys. 578, A6 (2015) D.J. McComas, M. Velli, W.S. Lewis et al., Rev. Geophys. 45, RG1004 (2007) A. Morbidelli, R. Jedicke, W.F. Bottke et al., Icarus 158, 329 (2002) K. Muinonen, E. Bowell, K. Lumme, Astron. Astrophys. 293, 948 (1995) D. Müller, R.G. Marsden, O.C.St Cyr, H.R. Gilbert, Solar Phys. 285, 25 (2013) R.H. Munro, B.V. Jackson, Astrophys. J. 213, 874 (1977) A. Mura, P. Wurz, J. Schneider et al., Icarus 211, 1 (2011) M. Neugebauer, G. Gloeckler, J.T. Gosling et al., Astrophys. J. 667, 1262 (2007) M.S. Povich, J.C. Raymond, G.H. Jones et al., Science 302, 1949 (2003) G.W. Preston, Astrophys. J. 147, 718 (1967) D. Prialnik, J. Benkhoff, M. Podolak, in Comets II, ed. by M. Festou, H. Keller, H. Weaver (University of Arizona Press, Tucson, 2004), p. 359 S. Protopapa, J.M. Sunshine, L.M. Feaga et al., Icarus 238, 11 (2014) S. Rappaport, A. Levine, E. Chiang et al., Astrophys. J. 752, 1 (2012) J.C. Raymond, P.I. McCauley, S.R. Cranmer et al., Astrophys. J. 788, 152 (2014) A. Rotundi, H. Sierks, V. Della Corte et al., Science 347, aaa3905 (2015) R. Sanchis-Ojeda, S. Rappaport, E. Pallè et al., Astrophys. J. 812, 112 (2015) G.C. Sanzovo, P.D. Singh, W.F. Huebner, Astron. Astrophys. Suppl. 120, 301 (1996) B.V. Sarli, Y. Kawakatsu, T. Arai, J. Spacecr. Rockets 52, 739 (2015) D.J. Scheeres, in 36th Annual Lunar and Planetary Science Conference, ed. by S. Mackwell, E. Stansbery (2005), p. 1919 E.R.D. Scott, G.J. Taylor, H.E. Newsom et al., in Asteroids II, ed. by R. Binzel, T. Gehrels, M. Matthews (University of Arizona Press, Tucson, 1989), p. 701 Z. Sekanina, Astrophys. J. 597, 1237 (2003) C.D. Slaughter, Astron. J. 74, 929 (1969) A.J. Steffl, N.J. Cunningham, A.B. Shinn et al., Icarus 223, 48 (2013) V. Tenishev, M.R. Combi, M. Rubin, Astrophys. J. 732, 104 (2011) M.H.H. van Dijk, P.B. Bosma, J.W. Hovenier, Astron. Astrophys. 201, 373 (1988) R. van Lieshout, M. Min, C. Dominik, Astron. Astrophys. 572, A76 (2014) A. Vourlidas, R.A. Howard, S.P. Plunkett et al., Space Sci. Rev. (2015). doi:10.1007/s11214-014-0114-y M.K. Wallis, in Comets, ed. by L.L. Wilkening (University of Arizona Press, Tucson, 1982), p. 357 W. Wamsteker, Astron. Astrophys. 97, 329 (1981) W. Waniak, Icarus 100, 154 (1992) A. Weigert, Astron. Nachr. 285, 117 (1959) P.R. Weissman, Astron. Astrophys. 85, 191 (1980) P.R. Weissman, M.F. A'Hearn, H. Rickman, L.A. McFadden, in Asteroids II, ed. by R. Binzel, T. Gehrels, M. Matthews (University of Arizona Press, Tucson, 1989), p. 880 F.L. Whipple, W.F. Huebner, Ann. Rev. Astron. Astrophys. 14, 143 (1976) J.N. Winn, D.C. Fabrycky, Ann. Rev. Astron. Astrophys. 53, 409 (2015) O.-Z. Ye, M.-T. Hui, P.G. Brown et al., Icarus 264, 48 (2016)
- M.E. Zolensky, T.J. Zega, H. Yano et al., Science 314, 1735 (2006)