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1.  Brief introduction & basic physics of stellar winds 

2.  The Sun:  convection → coronal heating? 

 

 

 

3.  Cool low-mass stars:  mass loss, pulsations, accretion 

4.  Hot high-mass stars:  radiation drives “cool” wind! 

Outline   (if I had an hour…) 
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Why do we care? 

• Consequently, they affect the formation & habitability of planets, too. 

•  In our own solar system, “space weather” 
affects satellites, power grids, pipelines, 
and safety of astronauts & high-altitude 
airline crews. 

•  If you can understand how plasmas behave 
in turbulent, expanding stellar 
atmospheres, you’ll have a superb 
grounding in many fields. 

• Stellar winds affect how stars & 
galaxies evolve… from pre-main-
sequence accretion to post-main-
sequence “death” & mass recycling. 
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Driving a stellar wind 

•  Gravity must be counteracted above the photosphere (not below) 
by some continuously operating outward force . . . 

Ø Gas pressure gradient:  needs T ~ 106 K  (“coronal heating”) 

Ø Radiation pressure:  possibly important when L* > 100 L� 

Ø Pulsations / Waves / Shocks:  can produce time-averaged net acceleration. 

Ø Magnetic effects:  closed loops of plasma (“plasmoids”) can be pinched like 
melon seeds and carry along some of the surrounding gas. 

 

~ 

•  free electron (Thomson) opacity?  (goes as 1/r2 ; needs to be supplemented) 
•  ion opacity?   (Teff  >  15,000 K) 
•  dust opacity?   (Teff  <  3,000 K) ~ 

F = ma 
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Quantifying a stellar wind 
• Stars are typically characterized by mass, radius, luminosity 

       (…and chemical abundances, rotation rate, magnetic field strength). 

• Winds need at least 2 more parameters:  mass loss rate & “terminal wind speed.” 

kg/s m2 kg/m3 m/s 
(Typically expressed 
in units of  M!/year) 

vr 

r 
R* 

v∞ v∞ is often ≈ surface Vesc 

 (most main-seq. stars) 
 

v∞ can also be << surface Vesc  as long 
as it eventually exceeds the local Vesc 

 (red supergiants) 



Stellar winds across the H-R Diagram 

Massive	stars:	
radia,on-driven	

winds	

Solar-type	stars:	
coronal	winds	
(driven	by	MHD	
turbulence?)	

Cool	luminous	
stars:		pulsa,on/

dust-driven	
winds?	
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The solar corona 
• 1870s:  First off-limb solar spectroscopy:  unknown emission lines  (“coronium?”) 

• 1930s:  Atomic physics identified lines: Fe+9, Fe+13 (T needs to be > 1 million K). 

• Of course, UV & X-ray observations sealed the deal . . . 
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The solar wind: prediction & discovery 
• 1958:  Eugene Parker put pieces together:  the million-degree 

corona has such a high gas pressure that it naturally expands! 

• 1959-1961:  Intermittent detections: 
Russian Lunik, Venera; American 
Explorer 10 

• 1962:  Marcia Neugebauer & colleagues 
got continuous data from Mariner 2 on 
its journey to Venus. 

• The solar wind fills the solar system! 



Solar & Stellar Winds S. R. Cranmer, NSO Solar Focus Meeting, April 3, 2018 

The “coronal heating problem” 
• Why is the corona’s T ~ 1 million K, when underlying atmosphere is ~6000 K ? 

How does a fraction (~1%) of available energy get: 
1.  transported up to the corona, 
2.  converted to magnetic energy, 
3.  dissipated as heat 

•  (Nearly!) everyone agrees that there is more than enough “mechanical energy” in 
the sub-surface convection zone to do the job… 

vs. 
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Turbulence:  Recent models are converging… 

Convection shakes & braids 
magnetic field lines in a 
diffusive “random walk” 

Alfvén waves propagate up... 

partially reflect 
back down... 

...and they undergo an MHD 
turbulent cascade, from large 

to small eddies, eventually 
dissipating in intermittent 

stochastic “nanoflares” 
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Solar wind physics 
• Parker (1958) is generally still valid. 
•  If we solve the heating problem, we’re ~90% of the way to understanding vr(r). 

• However, what sets the mass loss rate? 
• Not Parker! 

•  It’s a thermal energy balance… set in the 
upper chromosphere / lower transition region. 
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Chromosphere 

Transition region & low corona 
Supersonic wind (r >> R*) 
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Applying it to other stars 
•  Basal energy balance gives a good approximation for the mass loss rate 

(Leer & Holzer 1980; Hammer 1982; Hansteen et al. 1995). 

•  Stellar wind power: 
 

•  Reimers (1975) proposed a useful scaling… 

•  Schröder & Cuntz (2005) and Suzuki (2018) modified it… 

•  The Cranmer & Saar (2011) version is my favorite… 
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One last complication… 
•  Does Alfvénic turbulence always produce coronal heating?    No! 

•  If the mass loss rate is large, the wind 
density is >> solar wind’s density, and 
radiative cooling remains strong far above 
the stellar surface! 

•  In those “cold” cases (usually for luminous 
giants), gas pressure can’t accelerate wind. 

•  Alfvén wave pressure may take the place 
of gas pressure (Holzer et al. 1983). 
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Applying turbulence theory to cool stars 
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Evolution of inflows & outflows 
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What about CMEs? 
• For present-day Sun, the steady wind beats CMEs by > an order of magnitude. 

~  f*
0.27 

~  f*
2.51 
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What about CMEs? 
• Cranmer (2017):  going back in time, CME mass loss “wins!” 



Stellar winds across the H-R Diagram 

Massive	stars:	
radia,on-driven	

winds	
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Massive star winds:  radiative driving 
• Castor, Abbott, & Klein (1975) worked out how a 

hot star’s radiation can accelerate a time-steady 
wind, even if gravity >> continuum radiation force. 

• Spectral lines are the key! 

• CAK-type theory works well for spherical stars… 
but massive stars are… 

ν 

κν 

Rapidly rotating 

Strongly 
pulsating 

• Most pulsational energy is trapped below 
the surface. 

• But can some of the variability “leak out” 
into the wind? 



Conclusions 
• Within an order of magnitude, theories aren’t 

doing too badly in predicting observed 
properties of solar & stellar winds. 

• However, there’s still much to do . . . 

• Understanding is greatly aided by ongoing 
collaboration between the solar physics, 
plasma physics, and astrophysics communities. 

@solarstellar 


