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Why do we care?

• Consequently, they affect the formation & habitability of planets, too.

• Stellar winds affect how stars & 

galaxies evolve… from pre-main-

sequence accretion to post-main-

sequence “death” & mass recycling.
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Why do we care?

• Consequently, they affect the formation & habitability of planets, too.

• In our own solar system, “space weather” 

affects satellites, power grids, pipelines, 

and safety of astronauts & high-altitude 

airline crews.

• If you can understand how plasmas behave 

in turbulent, expanding stellar 

atmospheres, you’ll have a superb 

grounding in many fields.

• Stellar winds affect how stars & 

galaxies evolve… from pre-main-

sequence accretion to post-main-

sequence “death” & mass recycling.
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2. Cool stars:  generalizing the solar case; accretion
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Convection produces granulation

• Unstable convective 

overturning drives p-mode 

internal pulsation modes:

largely evanescent at surface.

• The uppermost convection cells are visible as “granules,” and strong-field 

magnetic flux tubes are jostled (mostly) horizontally… 

Spruit 

(1984)
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Flux tubes (eventually) fill the corona

Analyzing some individual 

thin-tube oscillations has 

led to novel ways to 

measure the magnetic field

(“coronal seismology”).

Nakariakov & 

Verwichte (2004)
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MHD waves expand out into the corona

With good instrumentation, imaging 

& spectroscopy can resolve plasma 

fluctuations in multiple ways…

• Transverse Alfvén waves dominate, 
with periods of order 3-5 minutes.

• Intensity modulations . . .

• Motion tracking in images . . .

• Doppler shifts . . .

• Doppler broadening . . .

• Radio sounding . . .

Tomczyk 

et al. 

(2007)
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Measured Alfvénic fluctuations

• Cranmer & van Ballegooijen (2005) collected a range of observational data…

Hinode/SOT

G-band 
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Ulysses

UVCS/SOHO

Undamped (WKB) waves

Damped (non-WKB) waves
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Measured Alfvénic fluctuations

• Cranmer & van Ballegooijen (2005) collected a range of observational data…

Hinode/SOT

G-band 

bright 

points

SUMER & EIS

Helios & 

Ulysses

UVCS/SOHO

Undamped (WKB) waves

Damped (non-WKB) waves

EIS

(Hahn et al. 

2013)
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Can turbulence explain coronal heating?

Convection shakes & braids magnetic 

field lines in a diffusive “random walk”

Alfvén waves propagate up...

partially reflect 

back down...

...and they undergo an MHD 

turbulent cascade, from large 

to small eddies, eventually 

dissipating in intermittent 

stochastic “nanoflares”
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Can turbulence explain coronal heating?

• If the cascade is driven & time-steady, the rate 
of stirring should = rate of cascade = rate of 
dissipation & heating.

• MHD simulations inspire phenomenological 
scalings for the stirring/cascade rate:

(e.g., Iroshnikov 1963; Kraichnan 1965; Strauss 1976; 

Shebalin et al. 1983; Hossain et al. 1995;

Goldreich & Sridhar 1995; Matthaeus et al. 1999; 

Dmitruk et al. 2002; Chandran 2008)
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• When plugged into self-consistent 

solutions for coronal heating & solar 

wind acceleration, it seems to work!

(Cranmer et al. 2007).

• Including rotation produces realistic 

3D structure (Cranmer et al. 2013). 
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Kinetic consequences…
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Kinetic consequences…

• When eddies reach gyroradius scales, does 

the anisotropic cascade prefer:

k

k

Observing collisionless heating rates high up 
(e.g., UVCS/SOHO) reveals indirect information 
about how wave dissipation heats particles . . .

 ion cyclotron waves?

 kinetic Alfvén waves?

 magnetosonic whistlers?
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Kinetic consequences…

• When eddies reach gyroradius scales, does 

the anisotropic cascade prefer:

k

k

Observing collisionless heating rates high up 
(e.g., UVCS/SOHO) reveals indirect information 
about how wave dissipation heats particles . . .

Does the “wave” picture break down 

altogether when the turbulence is organized 

into coherent current sheets?

 ion cyclotron waves?

 kinetic Alfvén waves?

 magnetosonic whistlers?
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MHD waves generated “higher up?”

Not all coronal & solar wind fluctuations come directly from the solar surface…
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MHD waves generated “higher up?”

Not all coronal & solar wind fluctuations come directly from the solar surface…

• The coronal magnetic field evolves via 

magnetic reconnection between ever-

changing magnetic flux systems.

• Some forms of reconnection can launch 

MHD waves (Lynch et al. 2014; Moore 

et al. 2015).

• Strong shears between fast & slow solar 

wind (and CMEs!) can be unstable to 

wave growth via Kelvin-Helmholtz 

instabilities (Foullon et al. 2011; Ofman 

& Thompson 2011).



1. The Sun:  convection → coronal heating?

2. Cool stars:  generalizing the solar case; accretion

3. Massive stars:  radiation pressure & pulsations
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Applying turbulence theory to solar-type stars
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Evolution of inflows & outflows
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Young stars:  2 sources of turbulence

• T Tauri protostars are convectively unstable… they generate their own waves.

• But the accretion is variable!  Clumps of plasma impact the star… and induce 
“externally driven” surface turbulence.

• Cranmer (2008, 2009) modeled the resulting winds & X-ray emission.

Impact-generated “ripples” are 
similar to EUV waves observed 
on the Sun after strong flares…
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Massive star winds:  radiative driving

• Castor, Abbott, & Klein (1975) worked out how a 

hot star’s radiation can accelerate a time-steady 

wind, even if gravity >> continuum radiation force.

• Spectral lines are the key!

• Bound electron resonances have higher cross-

sections than free electrons  (i.e., spectral lines

dominate the opacity κν)
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Massive star winds:  radiative driving

• Castor, Abbott, & Klein (1975) worked out how a 

hot star’s radiation can accelerate a time-steady 

wind, even if gravity >> continuum radiation force.

• Spectral lines are the key!

• Bound electron resonances have higher cross-

sections than free electrons  (i.e., spectral lines

dominate the opacity κν)

• In the accelerating wind, narrow opacity sources 

become Doppler shifted with respect to star’s 

photospheric spectrum.

• Acceleration thus depends on velocity & velocity 

gradient!   This turns “F=ma” on its head!   

(Nonlinear feedback...) ν

κν
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New forces  → new wave modes

• Radiative acceleration is proportional to (dv/dr) and wind density…

usually neglected; 

important for low freq’s

Steeper gradients → stronger line forces.

The Abbott (1980) speed UA can be supersonic 



Radiative & MHD fluctuations in Stellar Winds S. R. Cranmer, GTP Workshop, Aug. 17, 2016

New forces  → new wave modes

• Radiative acceleration is proportional to (dv/dr) and wind density…

usually neglected; 

important for low freq’s

Steeper gradients → stronger line forces.

The Abbott (1980) speed UA can be supersonic 



Radiative & MHD fluctuations in Stellar Winds S. R. Cranmer, GTP Workshop, Aug. 17, 2016

New forces  → new wave modes

• Massive stars undergo low-frequency pulsations. Do waves “leak out?”

• Proper treatment requires a non-WKB model of Abbott waves (Cranmer 2007).

Strongly nonlinear pulsations 

saturate;  radiation forces 

produce “kinks” in v(r)
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New forces  → new wave modes

• For a rotating star with “spots,” the 

nonlinear kinks produce corotating 

interaction regions (CIRs).

• CIRs appear to be visible in spectral 

lines formed in rotating winds 

(Cranmer & Owocki 1996). 
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New forces  → new wave modes

• A more accurate treatment of the 

radiation force shows that small 

wavelengths are strongly unstable to 

rapid growth  (Owocki & Rybicki

1984, 1985, 1986, …)

• The resulting shocks appear to explain 

X-rays seen around most O stars.

• For a rotating star with “spots,” the 

nonlinear kinks produce corotating 

interaction regions (CIRs).

• CIRs appear to be visible in spectral 

lines formed in rotating winds 

(Cranmer & Owocki 1996). 



Conclusions

• Waves are excellent diagnostics of stellar outflows.

@solarstellar

• Within an order of magnitude, theories aren’t 

doing too badly in predicting observed 

properties of solar & stellar winds.

• However, there’s still much to do . . .

• Understanding is greatly aided by ongoing 

collaboration between the solar physics, 

plasma physics, and astrophysics communities.


