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This is a parallel development between two physical situations that seem to obey the same basic gov-
erning equations. Similarities are stated in each paragraph, in the same row. Significant differences are

emphasized in .

The steps in the development below are not extensively referenced. For the inquisitive reader, though,
further references are given here for hot-star line-driving theory (Sobolev 1960; Lucy & Solomon 1970;
Castor 1970, 1974; Castor, Abbott, & Klein 1975; Abbott 1980, 1982; Owocki & Rybicki 1984, 1985, 1986;
Poe, Owocki, & Castor 1990; Owocki 1992; Gayley & Owocki 1994; Cranmer 1996) and ion-cyclotron
wave damping (Rowlands, Shapiro, & Shevchenko 1966; Hollweg & Turner 1978; Dusenbery & Hollweg
1981; Marsch, Goertz, & Richter 1982; McKenzie & Marsch 1982; Isenberg & Hollweg 1983; Gomberoff &
Elgueta 1991; McKenzie, Banaszkiewicz, & Axford 1995; Siregar & Goldstein 1996; Fletcher & Huber 1997;
Tu & Marsch 1997; Cranmer, Field, & Kohl 1999).

Hot-Star Wind Photons

Let us consider the case of a single photon from the
star, which eventually comes into “resonance” with

opacity from a single line transition in the wind.

lon-Cyclotron Waves

Let us consider the case of a monochromatic (sin-
gle frequency), outward-propagating Alfvén wave,
which eventually comes into “resonance” with the ion-
cyclotron frequency of a single ion in the wind.

The opacity is primarily of a scattering nature. (Let
us only deal with the direct scattering of photons out
of the radial direction.)

The photon has frequency v, which remains constant
in the inertial, or stellar rest frame.

The wind has a radially varying outflow speed u(r), so
in the frame comoving with the wind, the local photon
frequency is redshifted to be v(1—u/c). Because u < c,
we often represent this as v/(1 + u/c).

The opacity is centered on a frequency vo. Resonance
between the photon and opacity source occurs when:

u:uo(l-l-E)
c

The ion-cyclotron interaction is primarily of a damp-

ing, or absorption nature.

The wave has (angular) frequency w, which remains
constant in the inertial, or stellar rest frame.

The wind has a radially varying outflow speed u(r), so
in the frame comoving with the wind, the local wave
frequency is “Doppler shifted” to be w — uk), where

Ky is the local wavenumber.

The ion-cyclotron motions take place at a fre-
quency §£2;. Resonance between the wave and particle
oscillations occur when:

w— uk:” =Q;

The main radial variation comes from the photon red-

shift (in the w/c term). The opacity frequency vo is

constant with radius.

The main radial variation comes from the ion res-
onance frequency §£2;, which is proportional to the
The Doppler

shifted wave frequency (w — uk)) is approximately

rapidly decreasing B-field strength.

constant with radius.




The resonance is broadened around vo by random ther-
mal motions, with most-probable speed w, of the ions
that give rise to the line.

The frequency-dependent opacity (in units of 1/cm) is

B (V —wo(1 +u/c)>2
vow/c

where «1, is the mass absorption coefficient (cm?/g) at

given by

_ PikL
Xv = l/2

the center of the transition, and p; is the mass density
of scattering ions.

The photon flux F),, which normally varies in radius
to conserve photon number (i.e., as the inverse square
of distance), is also attenuated by an extinction term

due to the opacity:
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where the optical depth is given by an integration of
the opacity from the star to a given radius:

7 (7) =/ dr' x,

*

For a given photon propagating away from the star,
7, is zero until the resonance is encountered. Then
7, rapidly rises to an asymptotic value that we will
determine below. This variation is an erf function in
radius, which approaches a step function for an in-
finitely sharp resonance.

In the supersonic part of the wind, v > w, and thus
the most rapidly varying part of the opacity is the
Doppler shift in the resonant exponential term. Let us
make the Sobolev approximation and assume the
other quantities in , vary slowly over the resonance
zone, and thus can be pulled out of the optical depth

integral:

[zt [ (=3)]
Ty = KLP; exXp | — (T~ —
R7r1/2 w

*

where z = (v — vy)/(row/c).

The ion-cyclotron interaction is broadened around
2; by random thermal motions in the direction of
wave propagation. The relevant parallel most-probable
speed of the gyrating ions is denoted by w).

The frequency-dependent “opacity,” or momentum
transfer rate per unit wave power (in 1/cm), is given

by

Qi F w = uky = @\
R = iy, P | (T

where Fj is a dimensionless factor (proportional to
Q;/w k) and the ion temperature anisotropy ratio
Ty;/Ty;) which may be likened to an “oscillator
strength.”

The wave power P(w), which normally varies in radius
to conserve WKB wave action, is also attenuated by an
extinction term due to the wave-particle interaction:

P(w,T) = P(W7R*) fWKB(T) e
—_—

= Py(r)

where the “optical depth” is given by an integration

of the opacity from the star to a given radius:

Tu(r)z/ dr' R;

*

For a given wave propagating away from the star, 7,
is zero until the resonance is encountered. Then 7,
rapidly rises to an asymptotic value that we will de-
termine below. This variation is an erf function in ra-
dius, which approaches a step function for an infinitely
sharp resonance.

For €; > w) k), or an Alfven speed large compared to
the thermal speed, the most rapidly varying part of the
opacity is the variation of 2; in the resonant exponen-
tial term. Let us make a Sobolev-like approximation
and assume the other quantities in R; vary slowly over
the resonance zone, and thus can be pulled out of the
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optical depth integral:
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where z = (w — Uk\l)/(wllk'll)'



Becuase the Doppler shifted frequency is really the
primary variable in the resonance zone, let us change

variables in the integral, defining:

, u
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w
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dz' =
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The optical depth then becomes

ar

Tv = Tsob(b(m: ’I’)

where
Tsob = PikL Lgsob

the Sobolev length is given by
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The Sobolev optical depth 744}, is the asymptotic value
of 7, above the resonance zone, and it is a purely local
measure of how strongly the opacity wants to attenu-
ate the photons.

The energy lost by the photons is transferred into par-
ticle momentum and energy. The acceleration exerted

on each particle is given by:

Grad = /
0

Note that the quantity F), /c has the units of momen-
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tum flux per unit frequency, or in cgs, g cm™ "~ s~

Converting the integration variable from v to x, and

taking out all slowly varying quantities (in accordance

with the Sobolev approximation), one obtains
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Becuase the Doppler shifted frequency is really the
primary variable in the resonance zone, let us change
variables in the integral, defining:
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The optical depth then becomes
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Tv = Tsob(b(m: ’I’)

where

the Sobolev length is given by
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The Sobolev optical depth 7}, is the asymptotic value
of 7, above the resonance zone, and it is a purely local
measure of how strongly the opacity wants to attenu-
ate the photons.

The energy lost by the waves is transferred into par-
ticle momentum and energy. The acceleration exerted

on each particle is given by

Dres = / d
0

Note that the wave power P(w) has the units of mo-
1
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mentum flux per unit frequency, or in cgs, g cm™
s~ !. (The heating rates have additional phase velocity
terms in the integrand.)

Converting the integration variable from w to x, and

taking out all slowly varying quantities (in accordance

with the Sobolev approximation), one obtains
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d®(z,r)/dz, the integral becomes analytic:
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Noting is equal precisely to

For the case of an optically thick source of opacity
(Tsob > 1), the quantity in parentheses above is just
(1/7s0b), and the acceleration reduces to

voFo %
pic? Or
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Note that in this limit, g,.q does not depend on the
thermal speed w or the line absorption coefficient k1 ;
The extraction of momentum is saturated by the veloc-
ity gradient. The fact that the acceleration is propor-
tional to the velocity gradient (itself, really) introduces
a complicated nonlinear feedback into the physics of

line driving.

2
that e ® 7 Y2 s

d®(x,r)/dw, the integral becomes analytic:
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Noting equal precisely to

For the case of an optically thick source of opacity
(Tsob > 1), the quantity in parentheses above is just
(1/7sop), and the acceleration reduces to

_ Py 0%
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This extremely simple form was used by Tu & Marsch
(1997) for their model of proton heating by continual
“erosion” of the high frequency wave spectrum. We
have found, though, that there should be an additional
mechanism replenishing the spectrum on reasonably
rapid time scales, so the usefulness of this approach is
unclear.

Winds from hot stars are driven by a large number of
lines, so the total acceleration is the sum of hundreds
of grqq terms as derived above. A key development in
the theory was the insight of Castor, Abbot, & Klein
(1975) that the opacity of a large ensemble of lines
can be represented as a power law distribution in
k1. The sum over many lines can be replaced with

much a simpler acceleration term which is a function

of the distribution parameters.

Would it be useful to express the large number of
minor-ion cyclotron resonances as a CAK-like power
law distribution? One problem is that the “opacity”
(Ri/pi without the Gaussian term) does not span a
large range of values like line opacity does. More work
needs to be done.
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