43rd Annual Meeting of the Division of Plasma Physics October 29–November 2, 2001, Long Beach, California

How ultraviolet spectroscopy can constrain theories of MHD turbulence and kinetic wave dissipation in the solar wind

Steven R. Cranmer

Harvard-Smithsonian Center for Astrophysics, Cambridge, MA

Why study the Sun?

- ★ Closest example of a star!
- * A "laboratory without walls" for many basic kinetic and MHD processes:

- ***** gyroresonant wave damping
- ***** anisotropic turbulent cascade
- ★ shock acceleration
- ***** magnetic reconnection

Solar corona and solar wind span 14 orders of magnitude in density (collisional \longrightarrow collisionless, low $\beta \longrightarrow$ high β)

* **Space weather** can affect satellites, power grids, and the safety of orbiting astronauts . . .

The Sun's Outer Atmosphere

The solar photosphere exhibits a ~blackbody temperature of 5800 K.

The solar corona:

- ★ 1870s: unknown emission lines; a new element called *"coronium?"*
- ★ 1930s: Lines were identified as highly ionized ions: Ca¹²⁺, Fe⁹⁺ to Fe¹³⁺

T > 1 million K

The solar wind:

- ★ 1860s-1950s: evidence for outflowing plasma in solar system builds (geomagnetic storms, comet tails)
- ★ 1958: E. N. Parker proposed that the hot corona provides enough gas pressure to counteract gravity!
- ★ 1962: Mariner 2 provided direct confirmation of the supersonic solar wind.

We still have not uniquely identified the physical processes that heat the corona and accelerate the solar wind

Heating the Coronal Base

* The sharp "transition region" $(10^4 \rightarrow 10^6 \text{ K})$ is still not well understood.

★ Most suggested mechanisms involve the storage and release of magnetic energy in small-scale twisted or braided flux tubes.

(Magnetic flux continually emerges from the convective interior, replenishing itself every ~ 40 hours.)

★ **Dissipation** of the magnetic energy as heat probably occurs via Coulomb collisions (e.g., viscosity, resistivity, conductivity).

Heating the Extended Corona \rightarrow Solar Wind

Additional heating is required above 2 R_{\odot} . . .

- * The observed *in situ* T(r) gradient is shallower than if dominated by adiabatic expansion ($T \propto r^{-4/3}$).
- ★ Classical electron heat conduction (Chapman 1954) cannot be responsible for this supra-adiabaticity in *collisionless* plasma.
- * Magnetic moment (T_{\perp}/B) increases between 0.3 and 1 AU.
- * (Ultraviolet spectroscopy of extended corona)

It's a very different environment from the base . . .

- * The plasma becomes collisionless.
- ★ "Laminar" open magnetic fields dominate over stochastic ensembles of closed loops:

- Energy for heating plasma must ultimately *propagate* up from the Sun; i.e., waves, shocks, turbulent fluctuations.
- Dissipation of the fluctuation energy must be collisionless; i.e., wave-particle resonances.

In situ Particle Properties

Mariner 2 confirmed the continuous nature of the solar wind in 1962, and found two relatively distinct components:

high-speed (500-800 km/s)low density~laminar flowlow-speed (300-500 km/s)high densityvariable, filamentary

 \star In the high-speed wind (that emerges from coronal holes),

Electrons: thermal "core" + beamed "halo"

 \star suprathermals conserve $\mu = (T_{\perp}/B)$

(see, e.g., Marsch 1999, Space Sci Rev., 87, 1)

Protons: thermal core exhibits $T_{\perp} > T_{\parallel}$

- ★ μ grows ~linearly with distance (0.3–1 AU)
- \star beam flows ahead of core at $\Delta V \approx V_A$

Heavy ions:

flow faster than protons $(\Delta V \approx V_A)$

 $\star~(T_{
m ion}/T_{
m p})\gtrsim(m_{
m ion}/m_{
m p})$

(Collier et al. 1996, Geophys. Res. Letters, 23, 1191)

Ultraviolet Spectroscopy of the Corona

- * **Motivation:** measure plasma properties of hot (> 10^6 K) protons, electrons, and ions as they **accelerate.** (Too near Sun for *in situ*.)
- * The scattered photon emission is usually "optically thin:"

***** Off-limb Diagnostics:

spectral line shape	•••	velocity distribution along line-of-sight	(T_{\perp})
scattered line intensities	•••	velocity distribution in the sunward direction	$(T_{\parallel},V_{\parallel})$
(visible light polarization)	• • •	electron density	$(n_{ m e})$

★ Present-day instruments cannot detect departures from bi-Maxwellian distributions, but future instruments will have sufficient sensitivity to determine consistency or inconsistency with various non-bi-Maxwellian distributions.

Ultraviolet Spectroscopy: SOHO Results

SUMER/SOHO:

- Blueshifted emission lines at the coronal base map out launching points of the high-speed wind (e.g., Hassler et al. 1999).
- * $T_{\rm e}$ is not more than ~10⁶ K in coronal holes. $T_{\rm ion}$ exceeds $T_{\rm e}$ at very low heights, and depends on ion **charge-to-mass ratio** (Seely et al. 1997; Tu et al. 1998).

UVCS/SOHO:

- ★ Detailed analysis of line profiles and intensities allows us to deduce that H⁰ and O⁵⁺ have **anisotropic** distributions between 1.5 and 4 R_{\odot} in coronal holes (Kohl et al. 1997). For O⁵⁺, $T_{\perp}/T_{\parallel} \approx 10$ –100.
- * For O^{5+} , T_{\perp} approaches 200 million K at 3 R_{\odot} . The kinetic temperatures of O^{5+} and Mg^{9+} are much greater than massproportional when compared with hydrogen (Kohl et al. 1998, 1999; Cranmer et al. 1999; Esser et al. 1999).

 Doppler dimmed line intensities are consistent with the outflow speed for O⁵⁺ being larger than the outflow speed for H⁰ by as much as a factor of two (Li et al. 1998; Cranmer et al. 1999).

Ion Cyclotron Resonance

- * 1970s-present: Preferential ion heating/acceleration and anisotropies (detected both *in situ* and remotely) led theorists to investigate the damping of parallel-propagating ion cyclotron waves.
- * Dissipation of ion cyclotron waves produces **diffusion** in velocity space, along contours of \sim constant energy in the frame moving with the wave phase speed. ($V_A \gg v_{th}$)

* Quasi-linear diffusion model for O^{5+} ions in a homogeneous plasma:

- Anisotropy grows naturally as long as there is an energy supply of resonant waves in the corona. (Saturated by dispersion...)
- * Ions are accelerated *along* field both by: (a) forward curvature of velocity distribution, and (b) by magnetic mirroring of high $-v_{\perp}$ ions.

How are Ion Cyclotron Waves Generated?

Alfvén waves with frequencies > 10 Hz have not yet been observed in the corona or wind, but ideas for their origin abound:

(1) **Base generation** by, e.g., "microflare" reconnection in the lanes that border convection cells (e.g., Axford & McKenzie 1997).

Problem: Low Z/A ions consume base-generated wave energy before it can be absorbed by, e.g., O^{5+} , He^{2+} , p^+ .

- (2) Secondary generation: The Sun is suspected to emit low-frequency (< 0.01 Hz) Alfvén waves. This source of "free energy" may be converted into ion cyclotron waves *gradually* throughout the corona.
 - \Rightarrow MHD turbulent cascade?
 - ⇒ Instabilities seeded by non-Maxwellian distributions or large-scale velocity shears?

Problem: Turbulence produces mainly high- k_{\perp} fluctuations (i.e., still low frequency). Ion cyclotron waves propagating parallel to the background field may comprise only a *small fraction* of the total fluctuation power!

Problems with Base Generation...

If high-frequency waves originate only at the base of the corona, extended heating "sweeps" across the spectrum:

However, *minor ions* can damp the waves as well:

$$\Omega_{\rm ion} = \frac{Z_{\rm ion}}{A_{\rm ion}} \Omega_{\rm p} , \quad P \approx P_0 e^{-\tau} , \quad \tau \approx 10^5 \left(\frac{m_{\rm ion} n_{\rm ion}}{m_{\rm p} n_{\rm p}} \right)$$

Cranmer (2000) computed τ for 2523 species at 2 R_{\odot} :

If ion cyclotron resonance is indeed the process that energizes high charge-tomass ratio ions, the wave power must be **gradually replenished** throughout the extended corona, and cannot come solely from the base.

Gradual Generation of Ion Cyclotron Waves

- * Most of the work on gyroresonance in the solar wind has been for waves propagating *along* the field (k_{\parallel}) .
- * However, both simulations and analytic descriptions of MHD turbulence predict cascade from small to large *perpendicular* wavenumbers (k_{\perp}) .

(Alfvénic fluctuations with large k_{\perp} do not necessarily have large $\omega \to \Omega_{ion}$)

★ Perpendicular ("2D") turbulence does dissipate on the smallest scales, but this probably does not heat and accelerate ions preferentially.

(Landau damping in a low- β plasma tends to heat electrons preferentially...)

* In situ solar wind observations support this picture, but large- k_{\parallel} fluctuations are **also** seen (e.g., Leamon et al. 1998, 2000).

Studies of (multiple harmonic) ion cyclotron resonance with highly *oblique* $(\mathbf{k} \cdot \mathbf{B} \approx 0)$ waves are underway....

Quantitative Heating Rates for Parallel Propagation (1)

It is worthwhile to ask:

How much heating can be "squeezed out" of a purely parallel-propagating spectrum of ion cyclotron waves?

(i.e., maybe the empirically derived heating rates *themselves* give us constraints on the dominant range of obliqueness angles . . .)

Wave power constraints at 2 R_{\odot} :

(This assumes that all Alfvén wave power at 2 R_{\odot} is in "slab" waves...)

Quasi-linear heating rates:

$$\frac{Q_i}{m_i n_i} \approx \frac{\langle \delta B^2 \rangle_{\rm res}}{B_0^2} V_A^2 f(\eta, Z/A) \begin{cases} \Omega_p & \text{, if fast "cascade"} \\ k_{\rm res}^{-1} |\partial \Omega_p / \partial r| & \text{, if all sweeping} \end{cases}$$

Quantitative Heating Rates for Parallel Propagation (2)

Preferential ion heating arises in the dimensionless $f(\eta, Z/A)$ function:

Ions receive more "bang for the buck" because:

- ★ Lower $\Omega_i \longrightarrow$ more power
- ★ Dispersion relation allows more ions to be resonant

Quantitative Heating Rates for Parallel Propagation (3)

Compare empirical heating rates with simple quasi-linear estimates:

Conclusions:

- * **Protons** are probably **not** heated by parallel-propagating cyclotron waves!
- * As long as a (non-tiny) fraction of the wave power is in high- k_{\parallel} modes, there **does** seem to be sufficient power to heat **minor ions**.

Conclusions

- ★ Departures from Maxwellian velocity distributions are crucial probes of the (*still unknown*) heating and acceleration mechanisms.
 - \Rightarrow Future space-borne spectroscopy of the corona
 - \Rightarrow NASA's *Solar Probe* mission . . . ?
- ★ To make progress:

Generation and nonlinear evolution of the solar wind **fluctuation spectrum** must be understood.

Self-consistent **kinetic models** (corona \rightarrow wind) of protons, electrons, and ions are needed.

- ★ Future models must predict the properties of **many minor ion species**, because these may be the only means of distinguishing between competing models that, e.g., predict the *same* proton heating rates!
- ★ The lines of communication must be kept open between plasma physicists and astrophysicists.

For more information:

http://cfa-www.harvard.edu/~scranmer/

Selected References

- Axford, W. I., & McKenzie, J. F. 1992, in Solar Wind 7 (COSPAR Coll. Ser. 3), 1
- Axford, W. I., & McKenzie, J. F. 1997, in Cosmic Winds and the Heliosphere, (U. Arizona Press, Tucson), 31
- Banaszkiewicz, M., Axford, W. I., & McKenzie, J. F. 1998, Astron. Astrophys., 337, 940
- Chapman, S. 1954, Ap.J., 120, 151
- Collier, M. R., et al. 1996, Geophys. Res. Letters, 23, 1191
- Cranmer, S. R., Field, G. B., & Kohl, J. L. 1999a, Ap.J., 518, 937
- Cranmer, S. R., et al. 1999b, Ap.J., 511, 481
- Cranmer, S. R. 2000, Ap.J., 532, 1197
- Cranmer, S. R. 2001, J. Geophys. Res., in press
- Esser, R., et al. 1999, Ap.J. Letters, 510, L63
- Feldman, W. C., & Marsch, E. 1997, in Cosmic Winds and the Heliosphere, (U. Arizona Press, Tucson), 617
- Galinsky, V. L., & Shevchenko, V. I. 2000, Phys. Rev. Letters, 85, 90
- Goldstein, M. L., Roberts, D. A., & Matthaeus, W. H. 1995, Ann. Reviews Astron. Astrophys., 33, 283
- Hassler, D. M., Dammasch, I. E., Lemaire, P., et al. 1999, Science, 283, 810
- Hollweg, J. V. 1999, J. Geophys. Res., 104, 24781
- Hollweg, J. V., & Turner, J. M. 1978, J. Geophys. Res., 83, 97

- Isenberg, P. A., Lee, M. A., & Hollweg, J. V. 2000, Solar Phys., 193, 247
- Kennel, C. F., & Engelmann, F. 1966, Phys. Fluids, 9, 2377
- Kohl, J. L., et al. 1997, Solar Phys., 175, 613
- Kohl, J. L., et al. 1998, Ap.J. Letters, 501, L127
- Kohl, J. L., et al. 1999, Ap.J. Letters, 510, L59
- Leamon R. J., Smith, C. W., Ness, N. F., Matthaeus, W. H., & Wong, H. K. 1998, J. Geophys. Res., 103, 4775
- Leamon R. J., Matthaeus, W. H., Smith, C. W., Zank, G. P., Mullan, D. J., & Oughton, S. 2000, Ap.J., 537, 1054
- Li, X., Habbal, S. R., Kohl, J. L., & Noci, G. 1998, Ap.J. Letters, 501, L133
- Marsch, E. 1999, Space Sci. Rev., 87, 1
- Matthaeus, W. H., Zank, G. P., Oughton, S., Mullan, D. J., & Dmitruk, P. 1999, Ap.J. Letters, 523, L93

Parker, E. N. 1958, Ap.J., 128, 664

- Rowlands, J., Shapiro, V. D., & Shevchenko, V. I. 1966, Soviet Physics JETP, 23, 651
- Seely, J. F., Feldman, U., Schühle, U., Wilhelm, K., Curdt, W., and Lemaire, P. 1997, Ap.J. Letters, 484, L87
- Tu, C.-Y., & Marsch, E. 1995, Space Sci. Rev., 73, 1
- Tu, C.-Y., & Marsch, E. 1997, Solar Phys., 171, 363
- Tu, C.-Y., Marsch, E., Wilhelm, K., & Curdt, W. 1998, Ap.J., 503, 475

FOR MORE INFORMATION, CONTACT: Steven R. Cranmer (scranmer@cfa.harvard.edu) http://cfa-www.harvard.edu/~scranmer/