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This paper presents closed-form analytic solutions to two illustrative problems in solar physics that
have been considered not solvable in this way previously. Both the outflow speed and the mass loss
rate of the solar wind of plasma particles ejected by the Sun are derived analytically for certain
illustrative approximations. The calculated radial dependence of the flow speed applies to both
Parker’s isothermal solar wind equation and Bondi’s equation of spherical accretion. These
problems involve the solution of transcendental equations containing products of variables and their
logarithms. Such equations appear in many fields of physics and are solvable by use of the Lambert
W function, which is briefly described. This paper is an example of how new functions can be
applied to existing problems. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

Most stars eject matter from their atmospheres and fill
surrounding space with hot, low-density gas.1 Astronomers
and space physicists have studied the continuously exp
ing solar wind of charged particles from the Sun for almos
half century.2–4 The study of the solar wind as a uniqu
plasma laboratory is compelling for several reasons. M
basic processes in various fields of physics~for example,
plasma physics, electromagnetic wave theory, and none
librium thermodynamics! have been detected in the sol
wind and almost nowhere else. The solar wind is the clos
example of a stellar wind. Stellar winds affect the long-te
evolution of galaxies by injecting large amounts of mat
and energy into the interstellar medium. On the more pra
cal side, when solar wind particles impact the Earth’s m
netosphere, they can interrupt communications, threaten
ellites and the safety of orbiting astronauts, and disr
ground-based power grids.5

The crown-like solar corona seen during a total eclipse
the place where the solar wind undergoes its initial accel
tion. The shimmering auroras seen in northern and south
skies are the end products of the interaction between inc
ing solar wind particles and the Earth’s magnetic field. Sig
ings of the corona and the aurora go back into antiquity,
the first scientific understanding of the solar wind came
the beginning of the 20th century. Researchers gradually
alized that there were strong correlations between the app
ances of sunspot activity, geomagnetic storms, auroras,
motions in comet tails. In 1958, Eugene Parker6,7 combined
these empirical clues with the knowledge that the bright so
corona consists of extremely hot (106 K) plasma and postu
lated a model of a steady-state outward expansion from
Sun. Parker’s key insight was that the high temperature
the coronal plasma provides enough energy per particl
overcome gravity and produce a natural transition from
subsonic~bound, negative total energy! state near the Sun t
a supersonic~outflowing, positive total energy! state in inter-
planetary space. This theory was controversial at the ti
but Parker had only to wait four years until the existence
the continuous, supersonic solar wind was verified by
Mariner 2 probe in 1962.2
1397 Am. J. Phys.72 ~11!, November 2004 http://aapt.org
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Over the past decade, our understanding of the physic
the solar wind has increased dramatically from both n
space-based observations and the rapid growth of comp
power for simulations~see Refs. 8–10 for recent reviews!.
The Ulysses spacecraft, for example, was the first prob
venture far from the ecliptic plane and soar over the so
poles to measure the solar wind in three dimensions.11 Re-
mote observations of the solar corona have become sig
cantly more detailed with data from space-based telesco
pouring in as never before. Figure 1 shows a snapshot of
corona as observed in 1996 by two instruments on the SO
~Solar and Heliospheric Observatory! spacecraft. However
progress in solar wind research often requires substantia
merical analysis, because even the most basic problems
not been tractable by analytic means. This paper takes
vantage of a new transcendental function that is unfamilia
many physicists—the LambertW function—to illustrate how
two fundamental solar wind problems can be solved anal
cally.

In this era of efficient numerical computation, it is worth
while to list the various ways that analytic solutions for t
properties of the solar wind can be useful~beyond their pure
aesthetic appeal!. Analytic expressions often are used as in
tial guesses for more complicated iterative, time-depend
or multi-dimensional calculations. Closed-form solutio
also make it easier to study linearized perturbations t
known background state. The rapid evaluation of a la
number of cases is facilitated by having analytic formul
especially because many symbolic computation package
ready contain optimized routines for the LambertW func-
tion. Finally, the ability to write down simple expressions f
solar wind plasma properties may make the extrapolation
other stars more tractable and physically understandable

This paper presents a brief overview of the LambertW
function in Sec. II and a summary of the governing equatio
of the solar wind in Sec. III. The use of theW function in
solving the classical Parker solar wind problem, that is,
radial dependence of the wind speed for an isother
plasma, is given in Sec. IV. The use of this function in so
ing for the mass loss rate of the solar wind is given in Sec
Conclusions and other potential applications of this funct
are given in Sec. VI.
1397/ajp © 2004 American Association of Physics Teachers
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II. SOME PROPERTIES OF THE LAMBERT W
FUNCTION

Like many mathematical functions, the LambertW func-
tion was derived and used independently by several resea
ers before the mathematics and computer science comm
settled on a common notation in the mid-1990s.12 This func-
tion has been used to solve problems in electrostatics, st
tical mechanics, general relativity, radiative transfer, qu
tum chromodynamics, combinatorial number theory, f
consumption, and population growth,12–16 but is still not
widely known by physicists.

The LambertW function is defined as the multivalue
inverse of the functionxex. Equivalently, the multiple
branches ofW are the multiple roots of

W~z!eW(z)5z, ~1!

wherez is in general complex. There are an infinite numb
of solution branches, labeled by convention by an inte
subscript:Wk(z), for k50,61,62,... . If z is a real number
x, the only two branches that take on real values areW0(x)
and W21(x). Figure 2 plots these two branches, which a
the only ones that are needed in the applications of this
per.

Numerous formulas for the differentiation, integration, a
series expansion ofW are given in the references cited abo
~for example, Refs. 12 and 14!. One useful result, which is
applied in the following, is given here. Near the branch
point at x521/e, W05W21521, and the two real
branches can be approximated to lowest order by

W0~x!'211A212ex, ~2!

W21~x!'212A212ex. ~3!

A useful way for expressing the solutions to a stand
family of transcendental equations in terms of the Lamb
W function is to note that17

ln~A1Bx!1Cx5 ln D, ~4!

Fig. 1. The solar corona on 17 August 1996, with bright regions plotted
dark. The inner image was taken by the EIT~Extreme-ultraviolet Imaging
Telescope! instrument on Solar and Heliospheric Observatory~SOHO!, and
is sensitive to the ultraviolet emission of Fe111 ions at temperatures of abou
106 K. The outer image was taken by the UVCS~Ultraviolet Coronagraph
Spectrometer! instrument on SOHO by blocking out the bright disk to s
the much dimmer ultraviolet emission of O15 ions at temperatures exceed
ing 108 K. The magnetic field lines are from a model of the corona at
minimum of its 11 year activity cycle~Ref. 32!.
1398 Am. J. Phys., Vol. 72, No. 11, November 2004
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whereA, B, C, and D do not depend onx, has the exact
solution

x5
1

C
WFCD

B
expS AC

B D G2
A

B
. ~5!

The choice of solution branch usually depends on phys
arguments or boundary conditions.

III. GOVERNING EQUATIONS OF THE SOLAR
WIND

The expansion of the solar wind is treated traditionally
a problem of steady-state hydrodynamics. The Sun ha
strong magnetic field that confines and directs the flow
plasma~see Fig. 1!, but along the magnetic ‘‘flux tubes,’’ the
dynamics is essentially independent of the strength of
field. Thus, the overall properties of the solar wind can
determined by solving the hydrodynamic equations of ma
momentum, and energy conservation.2,18

The equation of mass conservation for a single-compon
fluid is given by

]r

]t
1“"~ru!50, ~6!

wherer is the mass density andu is the velocity. The equa-
tion of momentum conservation is

]u

]t
1~u"“ !u52

1

r
¹P1g, ~7!

whereP is the gas pressure andg is the net external force on
a parcel of gas, here assumed to be only due to gravity.
equation of total energy conservation,

]

]t S ru2

2
1

3P

2 D1“"FFH1FC1ruS u2

2
1

5P

2r
2

GM(

r D G
52r2F~T!, ~8!

contains several terms that arise from the ionized nature
the near-Sun plasma. The solar corona exhibits a tempera
of about 106 K, which is at least two orders of magnitud
higher than the temperature at the base of the atmosp
~that is, the photosphere and chromosphere!. A major un-

s

Fig. 2. The two real branches of the LambertW function.
1398Steven R. Cranmer



ca
o
,

no

n
u

en

n
ize
e
ive
ion
n

-
de

o
m
m

ec
na

o
th
,
e
-
e
n
la

to
ac
e
h
in
in
ow
-

te
’s

se

t

le
n

ith

m
uid

uent
fter

wn
ature
(

n

n is

om
ar,
ion
ro-

r
rs
f
out-
n
and

e
osi-
e-
is

-
e is

r
int

lly
pe
solved problem of solar physics is to explain what physi
processes lead to such large amounts of energy into the c
nal plasma. Significant progress has been made, though
constraining the input energy flux densityFH empirically,
even though the exact physical origin of this heating is
known.

Some of the energy deposited into the corona is tra
ported downward to the lower atmosphere via heat cond
tion ~that is, the radial component ofFC is negative!, and
some of it is converted back and forth between kinetic
ergy, thermal energy, and gravitational potential energy.@See
the final three terms in square brackets in Eq.~8!, whereG is
the gravitational constant andM ( is the mass of the Sun.#
Some of this energy also is lost in the form of radiatio
because many of the free electrons that exist in an ion
plasma undergo collisions with bound atoms and liberat
fraction of their energy to photon emission. The radiat
loss functionF(T) encapsulates the elemental composit
and atomic physics of the radiating coronal plasma as a fu
tion of temperatureT.

Equations~6!–~8! can be simplified in several ways with
out sacrificing realism. We can neglect the partial time
rivatives and restrict our analysis to time-steady solutions
a continuously expanding solar wind. Also, the vector ter
can be expressed in spherical polar coordinates, assu
that the variations exist only along the radial directionr and
that all vectors have nonzero components only in this dir
tion. For example, the radial component of the gravitatio
accelerationg is simply gr52GM( /r 2.

Very near the Sun, the assumption of radial flow is n
accurate because of the complex multipole structure of
solar magnetic field~see Fig. 1!. At larger distances, though
the radial flow of the solar wind has been largely confirm
by spacecraft measurements.2,8 However, the Sun’s slow ro
tation ~once every 27 days! causes the flow direction and th
magnetic field direction to become misaligned in interpla
etary space. Because of the high conductivity of the so
wind plasma, the magnetic field lines become ‘‘frozen in’’
the flow, that is, the magnetic field becomes a passive tr
of the flow, like drops of ink in a flow of water. A possibl
outdoor demonstration of this effect can be performed wit
persistent, rotating source of water flow, like a lawn spr
kler. Despite the fact that all of the water droplets are flow
radially away from the center, a snapshot at any time sh
them arranged in a spiral ‘‘streakline.’’ This field is com
pletely analogous to the Parker spiral magnetic field pat
in the solar wind, which carries the imprint of the Sun
rotation, but still channels the particle flow to be radial.

For the useful assumption of radial flow, the mass con
vation equation is expressed in spherical symmetry as

1

r 2

d

dr
~rur2!50. ~9!

Because the radial derivative ofrur2 is zero, this quantity is
constant. We thus define the total mass loss rate from
entire Sun~in units of kg s21) as Ṁ[4prur2, where the
factor of 4p comes from integrating over the full solid ang
of the spherical Sun. The energy conservation equatio
written as
1399 Am. J. Phys., Vol. 72, No. 11, November 2004
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1

r 2

d

dr H r 2FFH1FC1ruS u2

2
1

5P

2r
2

GM(

r D G J
52r2F~T!, ~10!

with the radial components of vectors written as scalars w
the same notation.

The gas pressureP can be eliminated from the momentu
equation by applying the ideal gas law, assuming the fl
consists of a single particle species with massm,

P5
rkT

m
[ra2, ~11!

wherek is Boltzmann’s constant anda is an effective sound
speed. For a hydrogen plasma,m is essentially the proton
mass. An added assumption that simplifies the subseq
analysis is that the hot corona is isothermal, that is, that a
the coronal heating takes hold, the;106 K temperature re-
mains roughly constant as a function of radius. It is kno
from spacecraft measurements that the plasma temper
drops only by a factor of 10 from the inner coronar
'1.5R() to the orbit of the Earth (r'215R(51 AU),
whereR( is the solar radius.2 Therefore, for the acceleratio
region of the solar wind~1.5 to 10R(), the isothermal ap-
proximation seems sufficiently valid.

If we substitute these conditions into Eq.~7! and use the
mass conservation equation, we obtain

S u2
a2

u D du

dr
5

2a2

r
2

GM(

r 2 . ~12!

It is noteworthy that the momentum conservation equatio
now a true equation of motion because the mass densityr no
longer appears.

IV. THE PARKER SOLAR WIND PROBLEM

The fluid in a steady-state stellar wind accelerates fr
rest to an asymptotic ‘‘coasting’’ speed far from the st
where the star’s gravity has become negligible. This situat
can only be maintained by a gradual transition from a hyd
static force balance close to the star~that is, where inward
and outward forces cancel! to a net outward force at large
distances.19 Parker6 recognized that this transition occu
naturally for a hot~million K ! corona, where the gradient o
the large gas pressure plays the role of the increasing
ward force. Equation~12! shows the primary manifestatio
of the gas pressure gradient as the first term on the right-h
side, which for a constanta eventually must overtake th
more steeply decreasing gravity term and result in a net p
tive ~outward! acceleration. Interestingly, the dynamics d
scribed by Eq.~12! does not depend on how the corona
heated, but merely on the fact that it is heated.

Parker also noticed that Eq.~12! exhibits a potential sin-
gularity at the ‘‘sonic point,’’u5a, because when this con
dition applies, the term in parentheses on the left-hand sid
zero, and for an arbitrary radius~that is, a finite value for the
right-hand side! the first derivative of the velocitydu/dr
must be infinite. However, there is one specific value for
where the right-hand side is zero as well. If the sonic po
occurs at the critical radiusr c5GM( /(2a2), then du/dr
may remain finite and the wind solution remains physica
realistic. Mathematically, this solution represents an X-ty
singular point, at which two solution trajectories in (r ,u)
1399Steven R. Cranmer
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space intersect with slopes of opposite signs and other s
tions are hyperbolic about this point. The joint set of con
tions r 5r c andu5a often is called the Parker critical poin

There are two possible solutions that pass through
critical point: one representing a continuously accelerat
outward flow of gas~the wind!, and one representing a
outwardly decelerating, but inward flow of gas~steady
spherical accretion!. Parker’s wind solution was criticized
initially for being too ‘‘finely tuned’’ because it seemed un
likely that a wind would naturally want to accelerate throu
the sonic point exactly atr 5r c . However, it has been no
ticed recently that Parker’s critical solution is the only tru
stable wind solution to Eq.~12!, and all other outwardly
flowing solutions are unstable.20 Note that six years before
Parker, Bondi21 recognized that the inward accretion soluti
also could represent real astrophysical flows. It was a
found that this solution, like Parker’s, is a stable attractor a
represents the maximum amount of mass that can be
sumed~in steady state! from an external source.22

Equation~12! is a first-order ordinary differential equatio
that is separable. The integration of the left side froma to an
arbitraryu and the right side fromr c to an arbitraryr yields
an implicit transcendental equation foru and r :

~u22a2!2a2 lnS u2

a2D54a2 lnS r

r c
D12GM(S 1

r
2

1

r c
D .

~13!

We rearrange terms and define the dimensionless variaby
[(u/a)2, so that Eq.~13! becomes

ln y2y5 ln D~r !, ~14!

where

D~r !5S r

r c
D 24

expF4S 12
r c

r D21G . ~15!

Thus, using Eqs.~4! and~5!, the Parker/Bondi solutions hav
the general analytic solutiony52W@2D(r )#. For all val-
ues ofr , D(r ) ranges between 0 and 1/e, so we must choose
between the two branchesW0 and W21 ~see Fig. 2!. Addi-
tionally, the full solution involves one choice below the cri
cal point and the opposite choice above it. The accelera
Parker solar wind solution is given specifically by

u25H 2a2W0@2D~r !#, r<r c

2a2W21@2D~r !#, r>r c
~16!

and the opposite choices must be made to obtain the B
accretion solution.

Figure 3 shows a set of solutions for the Parker solar w
with six choices for the constant sound speeda. These solu-
tions are compared to curves showing empirical~that is, ob-
servationally derived! speeds for the fastest and slowe
types of solar wind flow that have been seen. Because
only direct measurements of the wind speed have been e
rior to the orbit of Mercury (r .60R(), indirect methods are
needed to determine the wind speed at distances closer t
Sun. The analysis of ultraviolet photons emitted from t
corona has provided new ways of probing the solar win
acceleration,10 but a more traditional method is to measu
the density of particles in the corona and use mass conse
tion, that is, the steady state version of Eq.~9!, to compute
the wind speed. The density can be measured by obser
the linear polarization of Thomson-scattered visible light
1400 Am. J. Phys., Vol. 72, No. 11, November 2004
lu-
-

e
g

o
d
n-

g

di

d

t
ur
te-

the
e
s

a-

ng

the corona; the degree of polarization is directly proportio
to the number of free electrons along the line of sight.

In the following we give a simple parametrization23 of the
radial dependence of density as observed in the source
gions of the fast and slow components of the solar wind~at
the minimum of the Sun’s 11-year magnetic cycle!:

r~ fast!'2.37310219S 1

x2 1
5.9

x3 1
650

x9 D g/cm3, ~17a!

r~slow!'6.21310219S 1

x2 1
13

x3 1
480

x6 D g/cm3, ~17b!

wherex5r /R( . The wind speed at any radius is thus pr
portional to r21r 22 times a normalization constant that
given by specifying the measured wind speed at 1 AU. N
that at large distances the dominant terms in Eq.~17! will be
the 1/x2 terms, and thusu}r21r 22 at large distances will
approach a constant coasting speed.

The density is generally higher in the slower componen
the solar wind, which emerges mainly from bright ‘‘stream
ers’’ around the solar equator and reaches speeds at 1 A
300–500 km/s. The density is lowest in the fast solar w
that emerges mainly from dark ‘‘coronal holes’’ at the nor
and south poles and reaches speeds at 1 AU of 600–
km/s.11 Figure 3 shows that the acceleration of the slow wi
has a very similar shape to the analytic solutions given in
~16!. The fast wind has a slightly steeper profile in the coro
because this plasma is not isothermal, and because it
flows slightly ‘‘super-radially’’ ~that is, the magnetic field
over the poles flares out like a trumpet and the equations
not represented exactly by spherical symmetry; see Fig.!.
However, much of the essential physics of solar wind acc
eration remains encapsulated in the radial, isothermal p
lem.

One practical benefit of having an analytic expression
u(r ) is being able to easily find asymptotic expansions
various limiting cases. In the nearby vicinity of the critic

Fig. 3. Analytic solutions of the isothermal Parker solar wind equati
plotted as outflow speeds vs heliocentric distance~in units of a solar radius;
R(56.963108 m). Individual solutions~thin solid lines! are labeled with
the locations of the critical point~circles!. From bottom to top, the modeled
coronal temperatures are 0.1, 0.2, 0.5, 1, 2, 5 MK, respectively. Shown
comparison are observationally constrained wind speeds for polar~thick
dashed line! and equatorial~thick dotted line! flow at solar minimum.
1400Steven R. Cranmer
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point, that is, foru12(r c /r )u!1, the series expansions give
by Eqs.~2! and~3! can be used in conjunction with the seri
expansion ofD(r ) about the critical point to obtain a singl
expression for radii nearr c :

u'aA32
2r c

r
,

when

r'r c . ~18!

Other expansions can be used to obtain approximations
r !r c and r @r c .

V. THE MASS FLUX PROBLEM

The solution, Eq.~16!, for the solar wind speedu(r ) is
only half of the problem. Because the mass densityr was
eliminated from the equation of motion, we know how fa
the gas is accelerating, but we do not know how much ga
being ejected. The determination of the solar wind mass
rateṀ is the second half of the problem which, interesting
also is addressable using the LambertW function.

The Sun is observed to lose mass at a rate of appr
mately 10214 solar masses per year (M ( /yr). This uncon-
ventional unit is useful because it can be compared easil
a firm upper limit derivable by dividing the mass of the s
by its lifetime. For the Sun, with an expected main-seque
lifetime of about 1010 years, this upper limit is of orde
10210 M ( /yr. Thus, the solar wind is expected to dra
away no more than one ten-thousandth of the Sun’s m
over the next few billion years.~Some hotter stars lose ma
at much higher rates, with the wind having a substantial
pact on the star’s late stages of evolution.1!

There is still not universal agreement about what de
mines the Sun’s mass loss rate.24–27 Our analytic solutions
apply to only one of the several suggested mechanisms
this class of radiative energy balance models, first outline
detail by Hammer,24 Ṁ is determined at the base of the c
rona by the interplay between the heating and cooling te
in Eq. ~10!, the equation of energy conservation. Because
have solved foru(r ), the determination of the mass loss ra
requires only the solution for the density at a single radiu

To simplify Eq. ~10! further, the solar atmosphere can
considered to consist of two concentric layers: the c
(;104 K), high density chromosphere, and the overlyi
hot (;106 K), low density corona. The transition betwee
these layers has been observed to be exceedingly th
about 0.1% of a solar radius—so that the radial derivative
Eq. ~10! can be expressed as a simple difference of quant
above and below the transition zone. Because of the rela
thinness of this zone, we can ignore both the small chang
the gravitational potential energy between the two layers
the spherical divergence, that is, ther 2 terms inside and out
side the braces. Also, the kinetic energy termu2/2 can be
ignored because the solar wind speed has been seen
negligibly small~that is, very subsonic! at the solar surface
Finally, the coronal heating term itself,FH , is ignorable be-
cause we are concerned with layers below where the ma
ity of the heat is deposited. Thus there are only three do
nant terms in the energy balance:
1401 Am. J. Phys., Vol. 72, No. 11, November 2004
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dr
~FC15nukT!52r2F~T!, ~19!

where for convenience we rewrite the mass densityr as the
product of the particle massm and a number densityn, that
is, number of particles per unit volume. In summary, at t
coronal base the heat is conducted downward from whe
is initially deposited, some of it resides at the base as
thalpy, and the remainder is lost as radiation.

The steady state balance of mass and momentum ac
the thin transition zone also demands that the productsnu
~mass flux! and nT ~gas pressure! remain roughly constant
This mass flux constraint is used, together with an empir
form28,29 for the radiative loss functionr2F[n2AT21/2

~whereA51.9310232 W m3 K1/2), to obtain

dFC

dr
15nuk

dT

dr
52An2T21/2. ~20!

The differential equation~20! is transformed by multiplying
both sides by the heat conductive fluxFC . Note, though, that
it is advantageous to multiply the left-hand side byFC itself
and to multiply the right-hand side by the definition of th
classical conductive flux,

FC[2kT5/2
dT

dr
, ~21!

wherek is the Spitzer–Ha¨rm30 heat conductivity in an ion-
ized plasma, which has a value of 8.8310212 W m21 K27/2

for the range of densities and temperatures of the corona
rearrange and divide all terms by a factor ofdT/dr and
obtain the following form of the energy balance equation

jFC1FC

dFC

dT
5c, ~22!

where the quantitiesj55nuk andc5n2kAT2 are assumed
to be constant across the thin transition zone.

The form ~22! of the energy equation is separable a
integrable withT andFC as the independent and depende
variables, respectively. Once integrated across the trans
zone, though, the full equation contains terms forT andFC
in both the upper and lower layers. The terms correspond
to the lower~chromospheric! layer can be neglected becau
the values of bothT andFC are several orders of magnitud
smaller in comparison to their counterparts in the up
~coronal! layer. Thus, the integrated transcendental equa
relates the values ofT and FC at the coronal base to on
another and is independent of their values in the chrom
sphere:

FC1jT1
c

j
lnS 12

jFC

c D50. ~23!

We note that bothj andc contain the number density at th
coronal base~which we call n0). Hence, the LambertW
function can be used to solve for this quantity, with

n05
5u0kFC

kAT2@11W~v!#
~24!

and the argumentv of the W function is

v52expS 2
25u0

2k2

kAT D 21. ~25!
1401Steven R. Cranmer
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In this formulation, the only ‘‘free’’ variables areu0 , FC ,
andT ~all evaluated at the coronal base!. Just as in the Parke
solar wind application, the argumentv falls between21/e
and 0, thus making the choice between theW0 and W21
branches necessary. In this case, though, the physical ch
(W21) is apparent because theW0 branch gives a negativ
density.

To use the solution~24! to calculate the mass loss rate, w
use the results of Sec. IV to fixu0 for a given isothermal
Parker wind model. A realistic median value ofT is 1.2
3106 K, which has an outflow speedu0 of 0.96 km/s atr
5R( . To estimate the applicable values ofFC at the coronal
base, Eq.~21! can be solved assuming a finite-differen
temperature gradient across the thin transition zone. A th
ness Dr of 0.001R( gives values of FC of order
21000 W m22. In more accurate models,29 though, the tem-
perature gradient is a bit less steep at the top of the trans
zone, andFC ranges between250 and2200 W m22. For
this range, Eq.~24! for n0 yields values of the number den
sity between 631013 and 331014 m23. The mass flux, inte-

grated around the whole sphere, is thenṀ
[4pmpn0u0R(

2 , and the resulting values range betwe
93102 15 and 4310214 M ( /yr. The observed solar mas
loss rate is observed to vary between about
310214 M ( /yr at the solar minimum and a few times that
the solar maximum. If we take into consideration the la
number of approximations we have applied, we conclu
that the agreement is good.

VI. CONCLUSIONS

We have presented new analytic solutions to two sim
problems in solar wind physics. The LambertW function
used in these solutions was defined and publicized o
about a decade ago, but it has rapidly become a conven
tool for mathematical physicists. The elegance of expl
solutions to equations thought previously to be express
only implicitly is clear, but there also are many practic
benefits to having explicit solutions as well.

There are other potential applications of the LambertW
function in solar and space physics. A transcendental eq
tion solvable in terms ofW arises in a calculation of the
electric potential drop that exists between the Sun and
edge of the solar system.31 ~An ionized plasma exhibits loca
charge neutrality because of electrostatic screening, bu
solar wind particles in the Sun’s gravitational field this ne
trality is possible only by setting up a radially varying ele
tric field.! Functions with temperaturesT appearing both in-
side and outside exponents occur when calculating
energy distributions of solar photons~for example, the
Planck blackbody function! and electrons in excited atom
~for example, the Saha ionization equation!. The LambertW
function can thus be used in a variety of ways when the n
to solve for T arises. Further applications are expected
clarify the physics of many types of systems.
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Sechometer. Alternating current bridges are used to measure inductance and capacitance. Unfortunately, in the last third of the nineteenth centu, the most
sensitive detector was a galvanometer, a direct current instrument. The solution was the Sechometer invented by Prof. W. E. Ayerton and John Pe887.
This consisted of a crank turning a shaft on which were connected two sets of contacts. One set of contacts turned the DC from a battery into AC, aner
took the resulting off-balance AC signal to be detected, and turned it back into DC. This example, in the Greenslade Collection, is a rare scientifictrument
made by Gurley of Troy, NY, best known for fine surveying apparatus.~Photograph and notes by Thomas B. Greenslade, Jr., Kenyon College!
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