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1. Introduction

In the process of developing a Monte Carlo kinetic code ferdhceleration and heating of ions and
electrons in the solar wind, | have encountered at least teep of physics that amiffusivein velocity
space. (These processes are Coulomb collisions and guesi-lvave-particle interactions.) When mod-
eling the evolution of individual particles, one thus ne¢dspply some degree of randomness to their
trajectories.

These notes describe how to take a given kind of partial rifféal equation (usually describing dif-
fusion, with or without advection) and derive exact rules liow to update the positions of particles in a
probabilistic manner. These derivations follow, in pahe mathematical theory known as thé calculus
(see, e.g., Ikeda & Watanabe 1989; Rogers & Williams 1994)| will not attempt to use the mathematical
notation (or the large number of proofs and lemmas) commprégented in developments of this theory.
This kind of theory has been applied in astronomy (Spitzer &tH971; Spitzer & Thuan 1972; Yi et al.
1991) space physics (Veltri et al. 1990, 1993; Barakat & Baughi 1994; Barghouthi et al. 1993, 1998),
and theories of quantum gravity (e.g., Rumpf 1986). An Imtérsearch for “Ito calculus” also brings up
many sites devoted to using this theory for financial modgeéind the prediction of derivative prices.

None of the results in these notes can be considered “nevif’asceader wishes to cite anything in
this document, | would strongly suggest either contactireyfor further information or investigating the
references listed above. Furthermore, the excellent ¢ektlon partial differential equations by Guenther &
Lee (1988) contains many of the results derived below.

2. One-dimensional Diffusion Equation

Let us begin with a simple example, then generalize it inotggiways in the following sections. Con-
sider the classical one-dimensional diffusion equation,
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and the initial condition is specified &%x,t = 0) = fo(z). This equation, and many others like it, can be

solved by Fourier transform. For completeness let us defied-burier transform and its inverse transform
as

where —co <z <+oo , t>0, Q)
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If we assume that botlfi(z) and9df/0x go to zero asx — +oo, the last term above can be evaluated by
integration by parts, and the differential equation beceme
dg 2
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with its corresponding transformed initial conditigg(k). This is just a first-order ordinary differential
equation, with solution

_ 1.2
g(k, 1) = go(k)e P . (7)
To obtainf(x, t) we perform the inverse transform of eq. (7) and obtain
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If D > 0, the integral ovek is a standard form found in tables of definite integrals (oftéth ¢i*'~2)
replaced by its real part cogfr’ — x)]), and the solution is expressible as

fen = [ o) { exp [—M]} . 1)
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The function in curly brackets plays the same role as a Gsdenction in diffusion problems with a finite
spatial domain.

Let us consider the evolution of a particle, in tithand space:, which obeys the diffusion equation
(eq. [1]). Attimet = 0O let us assume we know the positiog of the particle. Thusfo(x) = 0(z — o), the
Dirac delta function. At a small increment of time in the figu = At, the solutionf(x, t) can be thought
of as theprobability densityof finding the particle at any positian. Using the Dirac delta function fof,

we obtain
(Ax)? }

1
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whereAx =z — xg, the incremental displacement over time-step It is trivial to confirm thatf above is
normalized to unity, so it is an actual probability density.

f(Az, At) = (12)

Thus, the “recipe” for updating the position of a particleifjally at xg and¢ = 0) is to incrementg
by an amount
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Az = N(€) V2D At

whereN(€) is a random sample from a normal distribution

1 2
N = —— e_5 /2 . 13
©) T (13)
with zero mean and unit variance. Itis a simple matter tosfieimn a uniformly distributed random number
(e.g., between 0 and 1 as in most compiRA&N functions) into a normally distributed random number (see
Press et al. 1992, and many others, for descriptions of tixeNBaller transformation).

3. One-dimensional “N-Diffusion” Equations

Let us generalize the above analysis to a class of differeatjuations with an arbitrary number of
differentiations:
of _ o

ot dzn
with the same boundary and initial conditions as eq. (1) abdwhe Fourier transform and integration by
parts can be done similarly to obtain the transformed difial equation
dg

0= — D(~ik)"g (15)

(14)

with solutions
gk, t) = go(k) ePHR" (16)

Let us examine several specific valuesfor

The advection equation(n = 1):

Upon performing the inverse Fourier transform of the abalatson forn = 1, we obtain

fx,t) = % /_ : dz’ fo(z") [ /_ : dk e~ H@=a*Di | (17)
However, the quantity in square brackets above can be esquiexs a form of the Dirac delta function:
8(x) = / - dk e 2tk (18)
Thus, o
flx,t) = /_OO dx’ fo(x) 6(x — 2’ + Dt) = fo(x + Dt) , (29)

i.e., itis an advected “copy” of the the initial conditionorFour particle recipe, the initial condition is itself
a delta function, so the particle displacement at a lateg thhis given deterministically by

Ax = —D At .




A Kortweg-DeVries equation (n = 3):

The third-order version of eq. (14) is related to the Kortvizg\ries (KdV) equation for soliton prop-
agation in various nonlinear media (see, e.g., Webb & Zard)1.9The inverse transform of the general
solution forg(k, t) is

fx,t) = % /_ R fola') /_ i exp[ik(z’ — ) +ik3Dt] (20)

and the variables in the latter integration can easily besfamed into the form required for the definition
of the Airy function:

Ai(z) = % /_ OOdT expli(zr +7%/3)] , (21)
and o L .
— / ' : r—x
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Ideally, sampling from the normalized distribution in guldrackets gives the particle update:. However,
the Airy function exhibits negative values for some valuégargument, so it is unclear how to interpret
the above quantity as a probability. (The actual KdV equationtains lower-order derivatives that may
change this result and make the particle updates more Istimigyardly computable.)

A hyper-diffusion equation (n = 4):

I will just state the result without derivation, and notetthhave not checked to see if the integral over
x below corresponds to any known “special function.” Noteutph, that we must requir® < 0 for this
solution to converge. Defining = —D > 0,

f(x,t) = /_OO dx’ fo(x) {Wlt)l/‘l/—oo dr e Cos{w]} ) (23)

Like the solution to the classicat (= 2) diffusion equation, the above function in curly brackistsymmetric
aboutzr = 2’ and is sharply peaked. However, it exhibits negative vakrpsalitatively similar to the Bessel
function Jp(z)—thus its interpretation as a probability is questionable

4. Useful Variable Transformations in 1D

Let us define the variables = x — at andr = ¢ and examine the behavior ¢{u, 7). The original
variables are expressed as
r=u+tar , t=7 (24)

and the partial derivatives gf with respect to the new variables are given by

of _of  of _ of [of (25)
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Thus, the standard advection equation is equivalent to
of
_Y = O
or ’

which means thaf (u, 7) is independent of, and thus is a function af only; i.e., f = f(x — at), which we
essentially derived above in eq. (19) with- —D.

(26)

A more interesting use of the above variables is to write taedard diffusion equation as
o 2
of _ pof
or ou?
for which we know the solutiory (u, 7). However, this equation is equivalent to thdvection-diffusion
equationin the original variables:

(27)

of of 0% f

- = —aq— +D—% . 28

ot~ "oz " 0a2 (28)
Thus, the update recipe for the advection-diffusion equa obtainable from the simpler update recipe for

Au = Az — aAt, and

Az = aAt +N() V2D At .

This expression is the most typical practical result fromtid calculus. Further, the 1td calculus shows that,
for small time stepg\t, the above update scheme is valid evendfand D being functions of: andt:
of _ of

which is the most general form of thekker-Planck equation.

5. Multi-Dimensional Diffusion Equations

One can use multi-dimensional Fourier transforms to géizeréhe above 1D results to additional
dimensions in the spatial coordinates (now described astaneg. The generalized diffusion equation for

f(x,t)is

of _ 2

i DVv-ef (30)
where the Laplacian operatar? is defined inm dimensions. The general solution is andimensional

integral over the initial conditiorfp(x), i.e.,

x — x/|?
fxt) = / ' folx) {W exp [_%} } , (31)

If one expresses in Cartesian coordinates and assumes fh@t) is a separable product of functions of each
coordinate, then the above solution is separable into théyat ofm functions each identical to eq. (11).
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Thus, for a 3D diffusion equation of the form

of _ 0°f  O*f  0°f
E‘D<W+a—y2+ﬁ> ’ (32)

the particle updates are independent of one another andveire loy

Az = N1y(€) V2D At
Ay = Na(€) V2D At
Az = N3(€) V2D At

where the numerical subscripts .6f(¢) indicate that there should be three independent samptingse
normal distribution.

6. Mixed Second Derivatives

Some diffusion equations contain mixed second derivatiéise form

0 f
xdy

but we will restrict ourselves to a specific “parabolic” scllass of these equations. Let us build up this type
of equation by defining two new variablpsandg:

S

alg+p) , y=>blg—p) . (34)

The second derivative of with respect tay is found to be

(f + Q) (33)

1
2\a b

with the inverse relation

8
I

Pf _ ,0%f &Pf 2
a—qz—aaxz ax8y+ba—z/2 (35)

This allows us to solve a diffusion equation with mixed set@artials of the above form, because the

solution to X
aof o°f
- = D—= 36
ot 0q? (36)
is known. The particle updates for this equation are

Ag N(E) V2D At (37)
Ap = 0 (38)

which transforms to the original coordinates as
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Az = a N(€) V2D At
Ay = b N(€) V2D AL

Unlike the 2-dimensional diffusion equation wiF f on the right-hand side, the particle updates/farand
Ay here arecorrelatedwith one another—i.e., only one sampling from the normarittigtion is performed.

One can think of this particle update as diffusion in a dimtthich has been rotated by an angle
from thez axis, and the anglé is given simply tanm'(b/a). This result is useful in the update of particle
velocities for ions and electrons under the influence of glisar wave-particle resonances.
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