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1. Introduction

In the process of developing a Monte Carlo kinetic code for the acceleration and heating of ions and
electrons in the solar wind, I have encountered at least two pieces of physics that arediffusive in velocity
space. (These processes are Coulomb collisions and quasi-linear wave-particle interactions.) When mod-
eling the evolution of individual particles, one thus needsto apply some degree of randomness to their
trajectories.

These notes describe how to take a given kind of partial differential equation (usually describing dif-
fusion, with or without advection) and derive exact rules for how to update the positions of particles in a
probabilistic manner. These derivations follow, in part, the mathematical theory known as theItô calculus
(see, e.g., Ikeda & Watanabe 1989; Rogers & Williams 1994), but I will not attempt to use the mathematical
notation (or the large number of proofs and lemmas) commonlypresented in developments of this theory.
This kind of theory has been applied in astronomy (Spitzer & Hart 1971; Spitzer & Thuan 1972; Yi et al.
1991) space physics (Veltri et al. 1990, 1993; Barakat & Barghouthi 1994; Barghouthi et al. 1993, 1998),
and theories of quantum gravity (e.g., Rumpf 1986). An Internet search for “Ito calculus” also brings up
many sites devoted to using this theory for financial modeling and the prediction of derivative prices.

None of the results in these notes can be considered “new,” soif a reader wishes to cite anything in
this document, I would strongly suggest either contacting me for further information or investigating the
references listed above. Furthermore, the excellent textbook on partial differential equations by Guenther &
Lee (1988) contains many of the results derived below.

2. One-dimensional Diffusion Equation

Let us begin with a simple example, then generalize it in various ways in the following sections. Con-
sider the classical one-dimensional diffusion equation,

∂f

∂t
= D

∂2f

∂x2 , where −∞ < x < +∞ , t > 0 , (1)

and the initial condition is specified asf (x, t = 0) = f0(x). This equation, and many others like it, can be
solved by Fourier transform. For completeness let us define the Fourier transform and its inverse transform
as

g(k) =
∫ +∞

−∞

dx f (x) eikx (2)
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f (x) =
1

2π

∫ +∞

−∞

dk g(k) e−ikx . (3)

Multiply each term in the differential equation byeikx, group the terms on one side, and integrate over allx:

0 =
∫ +∞

−∞

dx eikx
(

∂f

∂t
− D

∂2f

∂x2

)

(4)

=
∂

∂t

∫ +∞

−∞

dx eikxf − D

∫ +∞

−∞

dx eikx
∂2f

∂x2 (5)

If we assume that bothf (x) and∂f/∂x go to zero asx → ±∞, the last term above can be evaluated by
integration by parts, and the differential equation becomes

0 =
∂g

∂t
+ k2Dg (6)

with its corresponding transformed initial conditiong0(k). This is just a first-order ordinary differential
equation, with solution

g(k, t) = g0(k) e−k2Dt . (7)

To obtainf (x, t) we perform the inverse transform of eq. (7) and obtain

f (x, t) =
1

2π

∫ +∞

−∞

dk e−ikx g0(k) e−k2Dt (8)

=
1

2π

∫ +∞

−∞

dk e−ikx−k2Dt

[
∫ +∞

−∞

dx′ f0(x′) eikx
′

]

(9)

=
1

2π

∫ +∞

−∞

dx′ f0(x′)
∫ +∞

−∞

dk e−k2Dt+ik(x′
−x) . (10)

If D > 0, the integral overk is a standard form found in tables of definite integrals (often with eik(x′
−x)

replaced by its real part cos[k(x′ − x)]), and the solution is expressible as

f (x, t) =
∫ +∞

−∞

dx′ f0(x′)

{

1√
4πDt

exp

[

− (x− x′)2

4Dt

]}

. (11)

The function in curly brackets plays the same role as a Green’s function in diffusion problems with a finite
spatial domain.

Let us consider the evolution of a particle, in timet and spacex, which obeys the diffusion equation
(eq. [1]). At timet = 0 let us assume we know the positionx0 of the particle. Thus,f0(x) = δ(x − x0), the
Dirac delta function. At a small increment of time in the future t = ∆t, the solutionf (x, t) can be thought
of as theprobability densityof finding the particle at any positionx. Using the Dirac delta function forf0,
we obtain

f (∆x,∆t) =
1√

4πD∆t
exp

[

− (∆x)2

4D∆t

]

, (12)

where∆x = x− x0, the incremental displacement over time-step∆t. It is trivial to confirm thatf above is
normalized to unity, so it is an actual probability density.

Thus, the “recipe” for updating the position of a particle (initially at x0 andt = 0) is to incrementx0

by an amount
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∆x = N (ξ)
√

2D∆t

whereN (ξ) is a random sample from a normal distribution

N (ξ) =
1√
2π

e−ξ2/2 . (13)

with zero mean and unit variance. It is a simple matter to transform a uniformly distributed random number
(e.g., between 0 and 1 as in most computerRAN functions) into a normally distributed random number (see
Press et al. 1992, and many others, for descriptions of the Box-Muller transformation).

3. One-dimensional “N-Diffusion” Equations

Let us generalize the above analysis to a class of differential equations with an arbitrary number of
differentiations:

∂f

∂t
= D

∂nf

∂xn
, (14)

with the same boundary and initial conditions as eq. (1) above. The Fourier transform and integration by
parts can be done similarly to obtain the transformed differential equation

0 =
∂g

∂t
− D(−ik)ng (15)

with solutions
g(k, t) = g0(k) e+Dt(−ik)n . (16)

Let us examine several specific values forn:

The advection equation(n = 1):

Upon performing the inverse Fourier transform of the above solution forn = 1, we obtain

f (x, t) =
1

2π

∫ +∞

−∞

dx′ f0(x′)

[
∫ +∞

−∞

dk e−ik(x−x′+Dt)
]

. (17)

However, the quantity in square brackets above can be expressed as a form of the Dirac delta function:

δ(x) =
∫ +∞

−∞

dk e−2πikx . (18)

Thus,

f (x, t) =
∫ +∞

−∞

dx′ f0(x′) δ(x− x′ + Dt) = f0(x + Dt) , (19)

i.e., it is an advected “copy” of the the initial condition. For our particle recipe, the initial condition is itself
a delta function, so the particle displacement at a later time∆t is given deterministically by

∆x = −D∆t .
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A Kortweg-DeVries equation (n = 3):

The third-order version of eq. (14) is related to the Kortweg-DeVries (KdV) equation for soliton prop-
agation in various nonlinear media (see, e.g., Webb & Zank 1992). The inverse transform of the general
solution forg(k, t) is

f (x, t) =
1

2π

∫ +∞

−∞

dx′ f0(x′)
∫ +∞

−∞

dk exp
[

ik(x′ − x) + ik3Dt
]

(20)

and the variables in the latter integration can easily be transformed into the form required for the definition
of the Airy function:

Ai(z) ≡ 1
2π

∫ +∞

−∞

dτ exp
[

i(zτ + τ3/3)
]

, (21)

and

f (x, t) =
∫ +∞

−∞

dx′ f0(x
′)

{

1

(3Dt)1/3
Ai

[

− x− x′

(3Dt)1/3

]}

. (22)

Ideally, sampling from the normalized distribution in curly brackets gives the particle update∆x. However,
the Airy function exhibits negative values for some values of its argument, so it is unclear how to interpret
the above quantity as a probability. (The actual KdV equation contains lower-order derivatives that may
change this result and make the particle updates more straightforwardly computable.)

A hyper-diffusion equation (n = 4):

I will just state the result without derivation, and note that I have not checked to see if the integral over
κ below corresponds to any known “special function.” Note, though, that we must requireD < 0 for this
solution to converge. DefiningC ≡ −D > 0,

f (x, t) =
∫ +∞

−∞

dx′ f0(x′)

{

1

2π(Ct)1/4

∫ +∞

−∞

dκ e−κ4
cos

[

κ(x′ − x)

(Ct)1/4

]}

. (23)

Like the solution to the classical (n = 2) diffusion equation, the above function in curly brackets is symmetric
aboutx = x′ and is sharply peaked. However, it exhibits negative values—qualitatively similar to the Bessel
functionJ0(x)—thus its interpretation as a probability is questionable.

4. Useful Variable Transformations in 1D

Let us define the variablesu ≡ x − at andτ ≡ t and examine the behavior off (u, τ ). The original
variables are expressed as

x = u + aτ , t = τ , (24)

and the partial derivatives off with respect to the new variables are given by

∂f

∂u
=
∂f

∂x
,

∂f

∂τ
= a

∂f

∂x
+
∂f

∂t
. (25)
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Thus, the standard advection equation is equivalent to

∂f

∂τ
= 0 , (26)

which means thatf (u, τ ) is independent ofτ , and thus is a function ofu only; i.e.,f = f (x− at), which we
essentially derived above in eq. (19) witha = −D.

A more interesting use of the above variables is to write the standard diffusion equation as

∂f

∂τ
= D

∂2f

∂u2 , (27)

for which we know the solutionf (u, τ ). However, this equation is equivalent to theadvection-diffusion
equation in the original variables:

∂f

∂t
= −a

∂f

∂x
+ D

∂2f

∂x2 . (28)

Thus, the update recipe for the advection-diffusion equation is obtainable from the simpler update recipe for
∆u = ∆x− a∆t, and

∆x = a∆t + N (ξ)
√

2D∆t .

This expression is the most typical practical result from the Itô calculus. Further, the Itô calculus shows that,
for small time steps∆t, the above update scheme is valid even fora andD being functions ofx andt:

∂f

∂t
= − ∂

∂x
[a(x, t)f (x, t)] +

∂

∂x

[

D(x, t)
∂f

∂x

]

, (29)

which is the most general form of theFokker-Planck equation.

5. Multi-Dimensional Diffusion Equations

One can use multi-dimensional Fourier transforms to generalize the above 1D results to additional
dimensions in the spatial coordinates (now described as a vector x). The generalized diffusion equation for
f (x, t) is

∂f

∂t
= D∇2f (30)

where the Laplacian operator∇2 is defined inm dimensions. The general solution is anm-dimensional
integral over the initial conditionf0(x), i.e.,

f (x, t) =
∫

dx′ f0(x′)

{

1

(4πDt)m/2
exp

[

−|x− x
′|2

4Dt

]}

. (31)

If one expressesx in Cartesian coordinates and assumes thatf0(x) is a separable product of functions of each
coordinate, then the above solution is separable into the product ofm functions each identical to eq. (11).
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Thus, for a 3D diffusion equation of the form

∂f

∂t
= D

(

∂2f

∂x2 +
∂2f

∂y2 +
∂2f

∂z2

)

, (32)

the particle updates are independent of one another and are given by

∆x = N1(ξ)
√

2D∆t

∆y = N2(ξ)
√

2D∆t

∆z = N3(ξ)
√

2D∆t

where the numerical subscripts ofN (ξ) indicate that there should be three independent samplingsof the
normal distribution.

6. Mixed Second Derivatives

Some diffusion equations contain mixed second derivativesof the form

∂2f

∂x∂y

but we will restrict ourselves to a specific “parabolic” sub-class of these equations. Let us build up this type
of equation by defining two new variablesp andq:

p ≡ 1
2

(x

a
− y

b

)

, q ≡ 1
2

(x

a
+
y

b

)

(33)

with the inverse relation
x = a(q + p) , y = b(q − p) . (34)

The second derivative off with respect toq is found to be

∂2f

∂q2 = a2∂
2f

∂x2 + 2ab
∂2f

∂x∂y
+ b2∂

2f

∂y2 . (35)

This allows us to solve a diffusion equation with mixed second partials of the above form, because the
solution to

∂f

∂t
= D

∂2f

∂q2 (36)

is known. The particle updates for this equation are

∆q = N (ξ)
√

2D∆t (37)

∆p = 0 (38)

which transforms to the original coordinates as
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∆x = a N (ξ)
√

2D∆t

∆y = b N (ξ)
√

2D∆t

Unlike the 2-dimensional diffusion equation with∇2f on the right-hand side, the particle updates for∆x and
∆y here arecorrelatedwith one another—i.e., only one sampling from the normal distribution is performed.

One can think of this particle update as diffusion in a direction which has been rotated by an angleθ

from thex axis, and the angleθ is given simply tan−1(b/a). This result is useful in the update of particle
velocities for ions and electrons under the influence of quasi-linear wave-particle resonances.
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