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*,5" Background and brief history

‘,5" The Solar and Heliospheric Observatory (SOHO)

— Instrument overview

— “Launching” of the solar wind from the surface

—— Coronal holes and the fast solar wind

— Streamers and the slow solar wind

—— Why is the fast/slow wind fast/slow?— (space weather)

[

o " .
.,3 Conclusions and future prospects




Discovery of the Solar Wind

The solar corona:

1870s: unknown emission lines; a ne
element calledcoronium?”

1930s: Lines were identified as highl
ionized ions: C&*, F&* to Fe3*

T > 1 million K

The solar wind:

1860s to 1950s: evidence builds for outflowing plasma in the solar
system (flares» geomagnetic storms; anti-sunward comet tails)

1958: Eugene Parker proposed that the hot corona provides enough
gas pressurdo counteract gravity!
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1962: Mariner 2 provided first direct confirmation of the continuous,
supersonic solar wind.



Exploring the Solar Wind (1970s to present)

Two relatively distinct types of solar wind flow were found:

high-speed (500-800 km/s)  low density ~Ilaminar flow
low-speed (300-500 km/s)  high density variable, filamenfary

Neighboring wind streams with
different speeds form Corotating
Interaction Regions (CIRS):

Uncertainties about which type
Is “ambient” persisted because
measurements were limited to the
ecliptic plane. . .

Ulyssedeft the ecliptic; provided
3D view of wind'ssource regions.

Helios explored the inner solar €
wind (0.3-1 AU); saw strong )
departures from Maxwellian %X
velocity distributions:

TOWARDS THE SUN

Yohkoh observed solar X-rays over
a full solar cycle; discovered
new transient phenomena; provided
much more detail about howoronal
heating depends on thenagnetic
field.

We still have not uniquely identified the physical processes that heat the
corona and accelerate the solarwind . . . .
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SOHO Instruments: Outer Solar Atmosphere

SUMER (UV spectrometer) CDS (EUV spectrometer)

e

EIT (EUV imager) LASCO (visible coronagraph)




Wind Origins in Open Magnetic Regions

Sharpness of the transition region is evident from CDS spectroscopy:
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SUMER spectroscopy shows blueshifts indicating outflow (or upward
propagating waves?) in the low corona in tagergranular network:

Coronal holes (e.g., Hassler et al. 1999)
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Wind Origins in Open Magnetic Regions
These cartoons illustrate the basmagnetic-field geometryfor flux

tubes that feed the solar wind. Note the successive merging of flux
tubes on granular and supergranular scales
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(Cranmer & van Ballegooijen 2004)

Interpreting observations of chromospheric and transition-region lines
can be complicated. .
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Fast Solar Wind: acceleration & heating

UVCS measured plasma properties of hetl(® K) protons and heavy
ijons in north/soutlpolar coronal holesat solar minimum.

Simplest diagnostic: WIDTHS of emission lines provide a near-direct
measurement of the velocity distribution projected along the line of sight
(Doppler broadening): i.es T', in coronal holes. O VI 1032, 1037:
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Lines are formed via resonant scattering (of disk photons). The total
intensity depends on the radial component of ion’s velocity distribution
(Doppler dimming/pumping); i.es- uw) & Tj in coronal holes:
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Fast Solar Wind: acceleration & heating

In the extended corona, energy musf ;.. > T, > T.
propagate up from the Sun and (T;,,/T,) > (miom/m,)
ultimately dissipateollisionlesslyto T, > T,

heat the particles as observed: Uion > Up

lon cyclotron waves(10°~10* Hz) have been suggested as a natural
energy source that can be tapped to preferentially heat/accelerate ions:
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MHD waves with frequencies> 10 Hz have not yet been observed in
the corona or wind, but there is ample evidenceldorer-frequency
Alfv en waveq < 0.01 Hz) which may be converted into ion cyclotron

waves gradually in the corona.
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Slow Solar Wind: a coronal “census”

The visible corona is dominated by bright, tapetiedimet streamers”
known for decades to be associated with the slowest solar wind streams.
But what is themagnetic topologyof these regions?

{(F" pulllow

UVCS spectroscopy found
outflows consistent with slow
wind only along the EDGES of
streamers at solar minimum:
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LASCO movies spotlighted low-contrast “blobs” continually ejected
from streamer CUSPS .
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Why is the fast [slow] wind fast [slow]?

Easy answer: More heating in coronal holes?Probably not!)
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Comparison of coronal mag-
netic field models within situ
solar wind speeds gives a useful \ /,/
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empirical law:
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more energy collisionless; more less energy collisional; more
per particle T anisotropy per particle T isotropy
faster wind slower wind
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Conclusions

Our understanding of the dominant physics in the acceleration region of
the solar wind is increasing rapidly . . . but so is the complexity!

We still don’t know several key plasma parameters (€Igy.and T7,)
with sufficient accuracy, as a functionxfé, and solar cycle.

= SDO, STEREO, & Solar-B will launch in a few years.
We really needolar Probeand a next-generation UVCS !

Future models must predict the propertiesyainy minor ion species,
because these may be the only means of distinguishing between
competing models that, e.qg., predict g@mebulk plasma heating rates.

The lines of communication betweé¢rsolar, stellar, plasmj physicists
must be kept open.

See also: http://cfa—www.harvard.edu/~scranmer/
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