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1. Star-Star Heating

The process by which the radiation from one component of arpiaystem affects the pho-
tosphere of its companion is often called the “reflectioreff However, for early-type systems
with radiative envelopes, this is a misnomer, since moshefincident radiation isbsorbed. The
resulting temperature rise due to this irradiation is thenpry physical diagnostic of this effect,
and it is what this brief note attempts to predict analytical

Consider a binary system, with spherical stars (r&giandR,, luminosities.; andL,), their
centers separated by a distafzelLet us deal first with the radiation from star 2 incident u@on
specified point on star 1, and further only examine the “lrfiesenters” point on star 1 which is
closest to star 2. The effect of mutual irradiation will beosgest there. Note, of course, that the
stars themselves actualligrate this effect between one another, since, e.g., when start® hpa
star 1, that in turn affects the illumination back onto stag@d so on. This, fundamentally, is a
multiple scattering problem.

The simple approach we adopt (for each “iteration”) is totsee mutual irradiation affects a
grey atmosphere computed using the Eddington approximatmoring differences in the spectral
energy distributions between the two stars, we can simpiyka radiative equilibrium to scale up
the effective temperature of star 1 by including the inciderx from star 2,
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whereA; is a bolometric reflection albedo, which is unity for radiatienvelopes. However, this
effective albedo has been shown to drog\sa~ 0.5 for convective envelopes.

The optical depth dependence of the temperatiife), has been derived by Anderson &
Shu (1977) to take the above “plane parallel” irradiatioto iaccount, but also the effects of the
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geometry of the system. If the sky of the illuminated staragiglly filled by the illuminating star,
some of the incident flux will enter grazing angles, preferentially heating the upper photosphere
(T < 1). In the limit of a completely filled sky, the atmospherelwiéat up more and more, since
photons have nowhere to eventually “escape.” Anderson &($8id7) assume a grey temperature
law of the form

oT4(r) = 30T (T+Qo) 3)
whereQq is a constant to be determined. The resulting limb-darkgswoiution for the emergent
specific intensityl (11, 7 = 0) can be used to re-compute the flux, and the only remaimikgawn

is Qo.

Anderson & Shu (1977) also assume that, in thermal equilibyithe flux emerging from star
1 must be eventually radiated into the solid angle subtebgetiesky, (2s, which is smaller than
the total hemispheric value ofr2 This idealized thermal equilibrium demands that
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where the average denoted by angle brackets is defined by
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The last integral assumes axial symmetry about the linemtecs, and defines the edge angle
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Also, the sky solid angle is given Bys = 2r .. Working out the terms in eq. (4) results in
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Thus, wherue — 1 (i.e., no companion staro — 2/3, which is the classical Eddington value.
However, forue < 1, Qo grows rapidly, which indeed preferentially heats up thesotdyers of the
photosphere. (Note, of course, that Anderson & Shu’s assampf “thermal equilibrium” here
denotes thend result of multiple iterative heating, and not just a single itevat)

Finally, then, the temperature distribution is
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Let us write theratio of this enhanced temperature to the unaffected, singtedestgperature, at a
fiducial optical depth, say = 2/3. Note that this ratio isolates the irradiation heatingetffrom
other effects, such as gravity darkening. Thus,
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which depends only on the ratids,('L;), (R;/D), and R,/D), as well as the assumed albe&lo If

we compare this result to that of Cranmer (1991, 1993), whomded the mutual, fully-iterated,
and self-consistent geometrical irradiation heating oselbinaries, we find that the above relation
significantlyoverestimatesthe heating at the line-of-centers point, by factors of .6 for various
systems. It is th€),-factor, not the overall enhancemently, which seems to be the root of these
discrepancies.
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Actually, of course the re-radiation for a single iteratiwoill enter the complete hemisphere
(s~ 27) above the surface of star 1. (Itis only after many iteraitiat that star “knows” that the
effective sky is diminished!) If this is the case, we can usgléyson & Shu’'s (1977) “unbiased”
averages ofu) = 1/2 and(x?) = 1/3 in eq. (4), and obtain their result,
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which is consistentlgmaller than the exact value @, derived above (eq. [7]) fare < 1. Heating
derived with this simpler value d@, comes much closer to the full-geometry results of Cranmer

(1991, 1993), and, e.g.,
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is an adequate estimate of “reflection-effect” heating.
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