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1. Star-Star Heating

The process by which the radiation from one component of a binary system affects the pho-
tosphere of its companion is often called the “reflection effect.” However, for early-type systems
with radiative envelopes, this is a misnomer, since most of the incident radiation isabsorbed. The
resulting temperature rise due to this irradiation is the primary physical diagnostic of this effect,
and it is what this brief note attempts to predict analytically.

Consider a binary system, with spherical stars (radiiR1 andR2, luminositiesL1 andL2), their
centers separated by a distanceD. Let us deal first with the radiation from star 2 incident upona
specified point on star 1, and further only examine the “line-of-centers” point on star 1 which is
closest to star 2. The effect of mutual irradiation will be strongest there. Note, of course, that the
stars themselves actuallyiterate this effect between one another, since, e.g., when star 2 heats up
star 1, that in turn affects the illumination back onto star 2, and so on. This, fundamentally, is a
multiple scattering problem.

The simple approach we adopt (for each “iteration”) is to seehow mutual irradiation affects a
grey atmosphere computed using the Eddington approximation. Ignoring differences in the spectral
energy distributions between the two stars, we can simply invoke radiative equilibrium to scale up
the effective temperature of star 1 by including the incident flux from star 2,

σT 4
eff = σT 4

eff(star 1)+ Fincident (1)

=
L1

4πR2
1

+
A2L2

4π(D − R1)2
, (2)

whereA2 is a bolometric reflection albedo, which is unity for radiative envelopes. However, this
effective albedo has been shown to drop toA2 ≈ 0.5 for convective envelopes.

The optical depth dependence of the temperature,T (τ ), has been derived by Anderson &
Shu (1977) to take the above “plane parallel” irradiation into account, but also the effects of the
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geometry of the system. If the sky of the illuminated star is partially filled by the illuminating star,
some of the incident flux will enter atgrazing angles, preferentially heating the upper photosphere
(τ ≪ 1). In the limit of a completely filled sky, the atmosphere will heat up more and more, since
photons have nowhere to eventually “escape.” Anderson & Shu(1977) assume a grey temperature
law of the form

σT 4(τ ) = 3
4σT 4

eff (τ + Q0) , (3)

whereQ0 is a constant to be determined. The resulting limb-darkening solution for the emergent
specific intensityI(µ,τ = 0) can be used to re-compute the flux, and the only remaining unknown
is Q0.

Anderson & Shu (1977) also assume that, in thermal equilibrium, the flux emerging from star
1 must be eventually radiated into the solid angle subtendedby thesky, ΩS, which is smaller than
the total hemispheric value of 2π. This idealized thermal equilibrium demands that

Ftot =
∫

ΩS

I(µ)µdΩ =
3FtotΩS

4π

(

Q0〈µ〉+ 〈µ2〉
)

, (4)

where the average denoted by angle brackets is defined by

〈 f (µ)〉 ≡

∫

ΩS
f (µ)dΩ

∫

ΩS
dΩ

=
2π

ΩS

∫

µe

µ=0
f (µ)dµ . (5)

The last integral assumes axial symmetry about the line of centers, and defines the edge angle

µe = cosθe =

√

1−
(

R2

D − R1

)2

. (6)

Also, the sky solid angle is given byΩS = 2πµe. Working out the terms in eq. (4) results in

Q0 =
2
3

(

2−µ3
e

µ2
e

)

. (7)

Thus, whenµe → 1 (i.e., no companion star),Q0 → 2/3, which is the classical Eddington value.
However, forµe < 1, Q0 grows rapidly, which indeed preferentially heats up the outer layers of the
photosphere. (Note, of course, that Anderson & Shu’s assumption of “thermal equilibrium” here
denotes theend result of multiple iterative heating, and not just a single iteration.)

Finally, then, the temperature distribution is

T (τ ) =

{

3
4σ

[

L1

4πR2
1

+
A2L2

4π(D − R1)2

]

(τ + Q0)

}1/4

. (8)



– 3 –

Let us write theratio of this enhanced temperature to the unaffected, single-star temperature, at a
fiducial optical depth, sayτ = 2/3. Note that this ratio isolates the irradiation heating effect from
other effects, such as gravity darkening. Thus,

T
T0

(τ = 2/3) =
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)
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, (9)

which depends only on the ratios (L2/L1), (R1/D), and (R2/D), as well as the assumed albedoA2. If
we compare this result to that of Cranmer (1991, 1993), who computed the mutual, fully-iterated,
and self-consistent geometrical irradiation heating in close binaries, we find that the above relation
significantlyoverestimates the heating at the line-of-centers point, by factors of 1.5 to 6 for various
systems. It is theQ0-factor, not the overall enhancement inTeff, which seems to be the root of these
discrepancies.

Actually, of course the re-radiation for a single iterationwill enter the complete hemisphere
(ΩS ≈ 2π) above the surface of star 1. (It is only after many iterations that that star “knows” that the
effective sky is diminished!) If this is the case, we can use Anderson & Shu’s (1977) “unbiased”
averages of〈µ〉 = 1/2 and〈µ2〉 = 1/3 in eq. (4), and obtain their result,

Q0 =
2
3

(

2−µe

µe

)

, (10)

which is consistentlysmaller than the exact value ofQ0 derived above (eq. [7]) forµe < 1. Heating
derived with this simpler value ofQ0 comes much closer to the full-geometry results of Cranmer
(1991, 1993), and, e.g.,
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is an adequate estimate of “reflection-effect” heating.
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