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Outline:

• Background
• Alfvén wave generation  (thin flux tubes)
• Non-WKB wave reflection
• MHD turbulence
• Collisionless damping        ion heating
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The need for extended coronal heating

• The basal “coronal heating
problem” is well known:

• Above 2 Rs , additional energy deposition is required in order to . . .

» accelerate the fast solar wind  (without
artificially boosting mass loss and peak Te ),

» produce the proton/electron temperatures
seen in situ  (also magnetic moment!),

» produce the strong preferential heating and
temperature anisotropy of heavy ions (in the
wind’s acceleration region) seen with UV
spectroscopy.
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Coronal heating mechanisms
• Surveys of dozens of models:  Mandrini et al. (2000), Aschwanden et al. (2001)

• Where does the mechanical
energy come from?

• How is this energy coupled
to the coronal plasma?

• How is the energy dissipated
and converted to heat?
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Alfvén waves in open flux tubes
• Cranmer & van Ballegooijen (2005) built a model of the global properties of

incompressible Alfven waves in an open coronal-hole flux tube.

• Background plasma properties (density, flow speed, B-field strength) are fixed
empirically;   wave properties are modeled with virtually no “ free”  parameters.

• Note successive merging of flux tubes on granular & supergranular scales:
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G-band bright points   (close-up)

100–200 km
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Photospheric power spectrum
• The basal transverse fluctuation spectrum is specified from observed BP motions.

• The “ ideal”  data analysis of these motions:
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Photospheric power spectrum
• In practice, there are

two phases of observed
BP motion:

• “ random walks”  of
isolated BPs  (e.g.,
Nisenson et al. 2003);

• “ intermittent jumps”
representing mergers,
fragmenting,
reconnection?
(Berger et al. 1998).

PK not necessarily equal to PB !
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Kink-mode waves in thin flux tubes

splitting/merging
torsion

longitudinal
flow/wave

bending
(transversal wave)

• Below a 600 km “ merging height”  we
follow Lagrangian perturbations of a
~vertical flux tube  (Spruit 1981):

In reality, it’s not incompressible . . .
(Hasan et al. 2005;  astro-ph/0503525)

buoyancy term
(cutoff period: 9 to 12 min.)
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Supergranular “ funnel”  cartoons

Peter (2001)

Tu et al.
(2005)
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Non-WKB Alfvén wave reflection
• Above the 600 km merging height, we follow Eulerian perturbations along the axis

of the superradial flux tube, with wind  (Heinemann & Olbert 1980; Velli 1993):
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Resulting wave amplitude  (with damping)
• Transport equations solved for 300 “monochromatic”  periods (3 sec to 3 days),

then renormalized using photospheric power spectrum.

• One free parameter:  base “ jump amplitude”  (0 to 5 km/s allowed;  3 km/s is best)
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MHD turbulence

• It is highly likely that somewhere in the outer solar
atmosphere the fluctuations become turbulent and
cascade from large to small scales:

• With a strong background field, it is
easier to mix field lines (perp. to B)
than it is to bend them (parallel to B).

• Also, the energy transport along the
field is far from isotropic:

Z+
Z–

Z–
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Turbulent heating rate

• Anisotropic heating and
damping was applied to the
model; L   = 1100 km at the
merging height; scales with
transverse flux-tube dimension.

• The isotropic Kolmogorov law
overestimates the heating in
regions where Z– >> Z+
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Turbulent heating rate

• Anisotropic heating and
damping was applied to the
model; L   = 1100 km at the
merging height; scales with
transverse flux-tube dimension.

• The isotropic Kolmogorov law
overestimates the heating in
regions where Z– >> Z+

• Dmitruk et al. (2002) predicted
that this anisotropic heating may
account for much of the
expected (i.e., empirically
constrained) coronal heating in
open magnetic regions . . .
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How is the turbulent heating “ partitioned”
between protons, electrons, and heavy ions?
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UVCS results:  solar minimum (1996-1997 )
• Ultraviolet spectroscopy probes properties of ions in the wind’s acceleration region.

• In June 1996, the first measurements of heavy ion (e.g., O+5) line emission in the
extended corona revealed surpr isingly wide line profiles . . .

On-disk profiles: T = 1–3 million K Off-limb profiles: T > 200 million K !
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Solar Wind:  The Impact of UVCS
UVCS/SOHO has led to new views of the acceleration regions of the solar wind.
Key results include:

• The fast solar wind becomes supersonic
much closer to the Sun (~2 Rs) than
previously believed.

• In coronal holes, heavy ions (e.g., O+5)
both flow faster  and are heated hundreds
of times more strongly than protons and
electrons, and have anisotropic
temperatures.
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Ion cyclotron waves in the corona?

• UVCS observations have rekindled theoretical effor ts to understand heating and
acceleration of the plasma in the (collisionless?) acceleration region of the wind.

Alfven wave’s
oscillating

E and B fields

ion’s Larmor
motion around
radial B-field

• Ion cyclotron waves (10 to 10,000 Hz)
suggested as a natural energy source
that can be tapped to preferentially heat
& accelerate heavy ions.

• Dissipation of these waves produces
diffusion in velocity space along
contours of ~constant energy in the
frame moving with wave phase speed:
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Anisotropic MHD cascade
• Can MHD turbulence generate ion cyclotron waves?  Many models say no!

• Simulations & analytic models
predict cascade from small to
large k  ,leaving k  ~unchanged.
“ K inetic Alfven waves”  with
large k    do not necessarily
have high frequencies.

• In a low-beta plasma, KAWs
are Landau-damped, heating
electrons preferentially!
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Anisotropic MHD cascade
• Can MHD turbulence generate ion cyclotron waves?  Many models say no!

• Simulations & analytic models
predict cascade from small to
large k  ,leaving k  ~unchanged.
“ K inetic Alfven waves”  with
large k    do not necessarily
have high frequencies.

• In a low-beta plasma, KAWs
are Landau-damped, heating
electrons preferentially!

• Cranmer & van Ballegooijen
(2003) modeled the anisotropic
cascade with advection &
diffusion in k-space and found
some k   “ leakage”  . . .



Alfvénic Turbulence in the Fast Solar Wind
S. R. Cranmer

Sources of the Solar Wind
Berkeley, SSL, May 10, 2005

How are ions heated preferentially?

• Additional unanticipated frequency cascades  (e.g., Gomberoff et al. 2004)

• Fermi-like random walks in velocity space when inward/outward waves coexist
(heavy ions: Isenberg 2001; protons: Gary & Saito 2003)

• Impulsive plasma micro-instabilities that locally generate high-freq. waves
(Markovskii 2004)

• Non-linear /non-adiabatic KAW-particle effects (Voitenko & Goossens 2004)

• Larmor “spinup”  in dissipation-scale current sheets  (Dmitruk et al. 2004)

• KAW damping leads to electron beams, further (Langmuir) turbulence, and
Debye-scale electron phase space holes, which heat ions perpendicularly via
“collisions”   (Ergun et al. 1999; Cranmer & van Ballegooijen 2003)

• Collisionless velocity filtration of suprathermal tails  (Pierrard et al. 2004)

Var iations on “ Ion cyclotron resonance:”

Other  ideas:
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Conclusions

• Our understanding of the dominant physics in the acceleration region of the
solar wind is growing rapidly . . . But so is the complexity!

• Preliminary: It does seem possible to heat & accelerate the high-speed wind
via mainly incompressible Alfvenic turbulence.

For more information: http://cfa-www.harvard.edu/~scranmer/

• Lines of communication between { solar/stellar/plasma/astro}  physicists must
be kept open.

• We still don’ t know several key plasma parameters (e.g., Te and Tp) with
sufficient accuracy, as a function of r, , and solar cycle.

• Upcoming missions (SDO, STEREO, Solar-B) will help build a more
complete picture, but we really need next-generation UVCS and LASCO,
as well as Solar  Probe!


