ASTR-6000 Seminar COLLAGE: Coronal Heating, Solar Wind, & Space Weather

February 10, 2022

Coronal heating: reconnection & nanoflares (another whirlwind tour)

> Dr. Steven R. Cranmer Dr. Thomas E. Berger

Outline

- 1. Observations (and cartoons!) of reconnection sites on the Sun
- 2. Overview of magnetic reconnection: how much does it heat?

3. How is MHD turbulence relevant to all this...?

- This isn't a class about **solar flares!**
- However, if the idea is that coronal heating comes from a sum over many discrete/impulsive energy release events, we do need to look in that direction...

Cartoons! https://www.astro.gla.ac.uk/cartoons/

Twisted fields can build up as a result of shear motions on the surface (van Ballegooijen & Martens 1989)

(c)

Formation of flux ropes & filaments . . .

Overlying magnetic field has strong tension... wants to hold everything down.

Oppositely pointed magnetic field lines are often pushed together at the coronal base.

Decades of **observations** tend to support the basic picture of magnetic reconnection at the core of solar eruptive events...

but there's huge variety amongst events...

21-FEB-1992 Flare SXT Image

03:10:30 UT

Shibata & Magara (2011)

06:35:30 UT

04:52:22 UT

Filter : AL1

Burch & Drake (2009)

Even down to the **smallest scales** (in the chromosphere), there seems to be some kind of reconnection that drives impulsive events. Spicules, tadpoles, "anemone jets," EUV & X-ray microflares, etc.

Tian et al. (2014)

It's been known that {numbers of events} vs. {energy} is a power-law distribution... but Hudson (1991, *Solar Phys*, 133, 357) pointed out the importance of the slope...

$$N(E) \propto E^{-\alpha}$$
 if $\left\{ \begin{array}{l} \alpha > 2 \\ \alpha < 2 \end{array} \right\}$ the total is dominated by the $\left\{ \begin{array}{l} \text{smallest} \\ \text{largest} \end{array} \right\}$ events.

but the error bars on the slopes (not shown!) are still large...

and systematic effects may be obscuring the smallest events!

• Let us first introduce a useful dimensionless quantity, the Lundquist number:

 $S = \frac{V_{\rm A} L}{D_{\rm R}} \sim \frac{V_{\rm A} L}{v_{\rm th} \ell_{\rm mfp}}$

typical speeds & length scales of macro-scale MHD flows

typical magnetic diffusion coefficient (i.e., resistive diffusivity) characterizing random-walk speeds & lengths

• Let us first introduce a useful dimensionless quantity, the Lundquist number:

• Some use the symbol η for the diffusion coefficient, but I prefer using η for the "actual" electrical resistivity (and σ for electrical conductivity):

$$\mathbf{E} = \eta \mathbf{J} \qquad \qquad D_{\mathrm{B}} = \frac{c^2 \eta}{4\pi} = \frac{c^2}{4\pi\sigma}$$

• Most of the coronal volume (along with most astrophysical plasmas) has S >> 1 (often exceeding ~10¹²), which means resistivity *shouldn't* be important.

- However, sometimes the field gets twisted up into complex topologies, with small length scales *L*.
- In such regions S is no longer >> 1.
- If we want to study what happens when oppositely directed fields are pushed together, we're forced to take resistivity seriously.
- However, what if there was no resistivity? Pushing together perfectly "frozen-in" field lines would lead to a continual build-up... a log-jam...

- How to prevent a continuous build-up over time?
- The **resistive term** in the magnetic induction equation causes magnetic energy to diffuse... especially if there are sharp gradients!

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) + D_{\mathrm{B}} \nabla^{2} \mathbf{B}$$

- Let's look for a **steady-state** between buildup & diffusion.
- Define the thickness of the reconnection region (in y) as δ. As fields build up, δ gets smaller. Also, define u_{in} as the speed at which fields are pushed together.
- Eventually, we'll reach a point where they balance...

$$\frac{u_{\rm in}\,\delta}{D_{\rm B}} \approx 1 \qquad \Longrightarrow \qquad \delta \approx \frac{D_{\rm B}}{u_{\rm in}}$$

• This is the point at which diffusion balances buildup. Magnetic energy is converted to heat at a continuous rate.

- We still don't know how the corona determines δ or u_{in} .
- The next steps are still not universally agreed upon; it's still a very active field of research.
- Let's go over the original (Sweet & Parker 1957) theory, then talk about how more recent research is in the process of improving it.
- Treat the **diffusion region** as 2D and rectangular...

Things we know:

- **B** (strength of inflowing magnetic field)
- *L* (length scale of the reconnection region parallel to **B**)
- ρ (mass density, assume constant everywhere)

Things we don't know:

COLLAGE, Spring 2022

• u_{in} , u_{out} , δ

- To fully specify u_{in} , u_{out} , and δ , we need two more conditions:
- Mass conservation: if it's a steady state, then the total mass coming in must balance the total mass going out, in proportion to the dimensions,

$$\rho u_{\rm in} L \approx \rho u_{\rm out} \delta$$

Thus, the reconnection region is kind of like a toothpaste tube being compressed

- Lastly, there's energy conservation.
- Going in: assume motions are so slow that it's dominated by magnetic energy.
- Going out: B-field has been mostly cancelled; the "jets" are mostly kinetic energy.

 $\mathcal{E}=$ volume \times energy density, so

$$\begin{aligned} \mathcal{E}_{\rm in} &= \Delta x \, \Delta y \, \Delta z \, U_{\rm B} & \mathcal{E}_{\rm out} &= \Delta x \, \Delta y \, \Delta z \, U_{\rm K} \\ &= L \, (u_{\rm in} \Delta t) \Delta z \, \left(\frac{B^2}{8\pi}\right) & = (u_{\rm out} \Delta t) \, \delta \, \Delta z \, \left(\frac{1}{2} \rho u_{\rm out}^2\right) \\ \text{If } \mathcal{E}_{\rm in} &= \mathcal{E}_{\rm out} \ , \ \text{ then } \quad u_{\rm out} \, = \, \frac{B}{\sqrt{4\pi\rho}} = V_{\rm A} \quad (\text{the Alfvén speed}) \ . \end{aligned}$$

• In more realistic models, $\mathcal{E}_{in} \neq \mathcal{E}_{out}$ since *some* energy must go into heating up the diffusion region, and we can't totally ignore the kinetic (in) & magnetic (out) parts.

G

• We can now solve 3 equations for 3 unknowns...

$$u_{\rm in} = \frac{u_{\rm out} \,\delta}{L} \qquad \text{(from mass conservation)} \\ = \frac{V_{\rm A} \,(D_{\rm B}/u_{\rm in})}{L} \qquad \text{(from energy conservation \& Rm \approx 1 in box)}$$

and some additional algebra, in combination with the definition of the Lundquist number, gives

$$u_{\rm in}^2 = \frac{V_{\rm A}^2}{S}$$
 where recall that $S = \frac{V_{\rm A} L}{D_{\rm B}}$

• Thus, the Sweet-Parker result for the reconnection Alfvénic Mach number (sometimes called the "dimensionless reconnection rate") is:

$$\mathcal{M}_{\rm A} = \frac{u_{\rm in}}{V_{\rm A}} = \frac{\delta}{L} = \frac{1}{\sqrt{S}} \sim 10^{-6}$$

• In the solar corona: $S \approx 10^{12}$. . . $V_A \approx 1000$ km/s . . . so $u_{in} \approx 0.001$ km/s ?

(2) Overview of magnetic reconnection $\mathcal{M}_{A} = \frac{u_{in}}{V_{A}} = \frac{\delta}{L} = \frac{1}{\sqrt{S}} \sim 10^{-6}$

- In the solar corona: $S \approx 10^{12}$. . . $V_A \approx 1000$ km/s . . . so $u_{in} \approx 0.001$ km/s ?
- This doesn't make sense. It's too slow.
- A typical flare-producing region, with a size of about 1–10 Mm, "processes" the active-region B-field over a finite time...

$$\Delta t = \frac{\ell}{u_{\rm in}} \approx \frac{1-10 \text{ Mm}}{0.01 \text{ km/s}} = 10^5 \text{ to } 10^6 \text{ s} \text{ (days/weeks)}$$

(2) Overview of magnetic reconnection $\mathcal{M}_{A} = \frac{u_{in}}{V_{A}} = \frac{\delta}{L} = \frac{1}{\sqrt{S}} \sim 10^{-6}$

- In the solar corona: $S \approx 10^{12}$. . . $V_A \approx 1000$ km/s . . . so $u_{in} \approx 0.001$ km/s ?
- This doesn't make sense. It's too slow.
- A typical flare-producing region, with a size of about 1–10 Mm, "processes" the active-region B-field over a finite time...

$$\Delta t = \frac{\ell}{u_{\rm in}} \approx \frac{1-10 \text{ Mm}}{0.01 \text{ km/s}} = 10^5 \text{ to } 10^6 \text{ s} \text{ (days/weeks)}$$

• However, observed flares last only 5–10 minutes!

The real u_{in} must be **faster!**

COLLAGE, Spring 2022

• Observations, simulations, and some lab experiments now show that reconnection in MHD plasmas tends to occur with a narrow allowed range of

 $\mathcal{M}_{\mathrm{A}}~pprox~0.01~\mathrm{to}~0.1$

How does the universe get around the constraints of Sweet-Parker theory? It's still a topic of active research, with \sim 3 main avenues of study...

1. Plasmoid Instabilities: The thin diffusion region is unstable to the spontaneous growth of small magnetic "islands." Chaotic (fractal?) eddies produce extra diffusion:

larger
$$D_{\rm B} \longrightarrow$$
 smaller effective $S \longrightarrow$ faster $u_{\rm in}$!

2. Hall Effect: If the diffusion region is forced to be smaller than particle Larmor radii, then non-MHD collisionless effects can take over.

(electron scales << ion scales)

3. Petschek reconnection:

Maybe not all flows must pass through the diffusion region. Petschek proposed a model with oblique MHD shocks to help "process" some of the flow.

$$\mathcal{M}_{\mathrm{A}} = \frac{u_{\mathrm{in}}}{V_{\mathrm{A}}} \approx \frac{1}{\ln S}$$

(not as tiny as Sweet-Parker!)

Theorists have fleshed out a kind of "phase diagram" for reconnection modes, illustrating the main regimes and (fuzzy) boundaries

(Lapenta et al. 2013, J. Space Weather and Space Climate, 3, A05)

Observers still find the Petschek model useful... especially for cases where *in situ* instruments fly right through the reconnection regions!

• One more (pretty important) question to ask about reconnection regions: How much actual **energy (i.e., heating)** can we get out of one?

- One more (pretty important) question to ask about reconnection regions: How much actual **energy (i.e., heating)** can we get out of one?
- The diffusion region is often called a **current sheet...** for good reason...

B points mostly along *x*, but varies along *y*. That counts as a nonzero curl!

$$\mathbf{J} = \frac{c}{4\pi} \nabla \times \mathbf{B} \quad \Longrightarrow \quad J_z \sim \frac{c B_x}{4\pi \,\delta}$$

• If magnetic energy is dissipated & turned into heat, then

$$Q_{\text{heat}} = \mathbf{J} \cdot \mathbf{E} = J_z E_z = \eta J_z^2 = \Rightarrow = \frac{u_{\text{in}} B^2}{4\pi \,\delta}$$

• Thus, if the event occurs over time Δt , and in a volume $V = L^2 \delta$, then the energy is:

$$\mathcal{E} = Q_{\text{heat}} V \Delta t = \frac{B^2}{4\pi} L^2 V_{\text{A}} \mathcal{M}_{\text{A}} \Delta t$$

(2) Overview of magnetic reconnection $\mathcal{E} = Q_{\text{heat}} V \Delta t = \frac{B^2}{4\pi} L^2 V_A \mathcal{M}_A \Delta t$

• For typical solar corona regions...

$$\mathcal{E} \approx 10^{30} \text{ erg} \left(\frac{B}{1000 \text{ G}}\right)^2 \left(\frac{L}{1 \text{ Mm}}\right)^2 \left(\frac{V_{\text{A}}}{1000 \text{ km/s}}\right) \left(\frac{\mathcal{M}_{\text{A}}}{0.1}\right) \left(\frac{\Delta t}{100 \text{ s}}\right)$$

Try a small,
barely resolvable
$$B \sim 100 \text{ G}$$

 $L \sim 0.1'' \sim 70 \text{ km}$
 $\Delta t \sim 10 \text{ s}$ $\rightarrow \mathcal{E} \approx 4 \times 10^{24} \text{ erg}$ ("nanoflare")

Try something pretty massive:

$$B \sim 5000 \text{ G}$$

$$L \sim 30 \text{ Mm}$$

$$\Delta t \sim 100 \text{ s}$$

$$E \approx 10^{34} \text{ erg} \quad (>X10 \text{ superflare!})$$

(2) Overview of magnetic reconnection $\mathcal{E} = Q_{\text{heat}} V \Delta t = \frac{B^2}{4\pi} L^2 V_A \mathcal{M}_A \Delta t$

- Two final wrinkles:
- If the fields on either side are asymmetric, simulations show that it's fine to

replace
$$B^2$$
 by B_1B_2

• If the fields on either side aren't exactly anti-parallel (i.e., if there's a common "guide field" between them), one can just use the anti-parallel components:

(3) MHD turbulence and reconnection

- Unlike hydrodynamic turbulence, when the background **B**-field is strong, the turbulent "eddies" take the form of counter-propagating Alfvén wave packets.
- When packets collide, nonlinear terms in MHD equations generate higher harmonics.
- Kraichnan (1965) found cascade occurs only when there is "power" in both directions...

(3) MHD turbulence and reconnection

• Because magnetic fields have **tension**, most of the cascade happens perpendicular to the background field. (It's easier to shuffle dried spaghetti than it is to bend it...)

"strong field"

"weak field"

- Wave-packet collisions create higher harmonics (perpendicular to **B**).
- Howes (2016) showed that there's a similar behavior as with the addition of harmonics to make a square wave...
- Thin **current sheets** (at which guide-field reconnection occurs) occur naturally at small (kinetic) dissipation scales.

(3) MHD turbulence and reconnection

• A snapshot of a current-sheet-filled "box of turbulence" looks pretty much like what Parker (1972, 1983, 1988) had in mind for the tangled/braided DC heating scenario...

van Ballegooijen et al. (2011)

Rappazzo et al. (2007)

• Many models boil down to a cascade rate that's a modification of Kolmogorov's rate:

$$Q_{\text{heat}} \approx \frac{\rho u^3}{\lambda_{\text{ph}}} \left(\frac{\tau_{\text{ph}}}{\tau_{\text{A}}}\right)^q \qquad q = \begin{cases} 0 \text{ (Kolmogorov 1941)} \\ 1-2 \text{ (Galsgaard & Nordlund 1996)} \\ 1.5 \text{ (Dmitruk & Gomez 1999)} \\ 1.5-2 \text{ (Rappazzo et al. 2008)} \\ 2 \text{ (van Ballegooijen 1986; Parker 1988)} \end{cases} \qquad m = 2 - q$$

Conclusions

- The **coronal heating problem** is far from being solved, but I hope that we've conveyed some of the relevant physics problems that are involved.
- New observations (higher spatial/time/spectral resolution) are needed!

For next week

• Read paper 3: "Stellar Wind Mechanisms and Instabilities," a review paper by Stan Owocki (2004). <u>PDF is here.</u>

- You only need to read sections 1, 2, and 3 (numbered pages 163–181; i.e., just the first 19 pages of the PDF)
- Participate in the <u>#paper-3-discussion</u> channel on Slack for next week (February 17, 2022)

