ASTR-6000 Seminar COLLAGE: Coronal Heating, Solar Wind, & Space Weather

January 27, 2022

Coronal heating: discussion & hands-on exercises

Dr. Steven R. Cranmer Dr. Thomas E. Berger

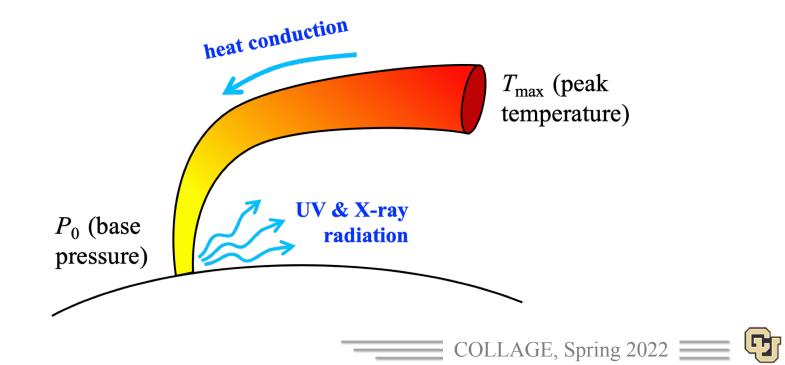
Outline

- 1. Finish discussing slides from last week \checkmark
- 2. The RTV model & Martens (2010)
- 3. handson_corona_v1.ipynb

• Martens (2010) presented a mathematical way to solve the full balance between the three dominant heating/cooling terms in a static coronal loop:

$$Q_{\text{cond}} + Q_{\text{heat}} + Q_{\text{rad}} = 0$$

- I did not assign you to read the classic "RTV" (Rosner, Tucker, & Vaiana 1978) paper, because they didn't really **show their work.**
- Here, let's show the work with a simpler version (constant heating rate: $\alpha = \beta = 0$).



• Martens (2010) assumed the standard Spitzer-Härm form for heat conduction and a power-law form for the radiative cooling function...

$$Q_{\text{cond}} + Q_{\text{heat}} + Q_{\text{rad}} = 0$$

$$\int \int \int \int dT = 0$$

$$\frac{d}{dz} \left(\kappa_0 T^{5/2} \frac{dT}{dz} \right) + E_h - P_0^2 \chi_0 T^{-(2+\gamma)} = 0. \quad (1)$$

• Let's assume $P_0 = \text{constant}$ (which Martens does) and $E_h = \text{constant}$ (which he doesn't).

• Martens (2010) assumed the standard Spitzer-Härm form for heat conduction and a power-law form for the radiative cooling function...

$$Q_{\text{cond}} + Q_{\text{heat}} + Q_{\text{rad}} = 0$$

$$\int \int \int \int dT = 0$$

$$\frac{d}{dz} \left(\kappa_0 T^{5/2} \frac{dT}{dz} \right) + E_h - P_0^2 \chi_0 T^{-(2+\gamma)} = 0. \quad (1)$$

- Let's assume $P_0 = \text{constant}$ (which Martens does) and $E_h = \text{constant}$ (which he doesn't).
- Define dimensionless variables...

$$\eta = \left(\frac{T}{T_{\text{max}}}\right)^{7/2} , \quad x = \frac{z}{L} , \quad \epsilon = \frac{2\kappa_0 T_{\text{max}}^{(11/2)+\gamma}}{7\chi_0 P_0^2 L^2} , \quad \xi = \frac{E_h T_{\text{max}}^{2+\gamma}}{\chi_0 P_0^2} , \quad \mu = -\frac{2(2+\gamma)}{7}$$

$$\epsilon \frac{\partial^2 \eta}{\partial x^2} + \xi - \eta^{\mu} = 0$$

(and we see why adding Q_{rad} makes it a more difficult equation to solve)

Coronal energy balance $\epsilon \frac{\partial^2 \eta}{\partial x^2} + \xi - \eta^{\mu} = 0$

When we neglected radiation, we had a 2nd order differential equation with 3 boundary conditions. The "extra" one helped us pin down the constant (ξ/ε).

Coronal energy balance $\epsilon \frac{\partial^2 \eta}{\partial x^2} + \xi - \eta^{\mu} = 0$

- When we neglected radiation, we had a 2nd order differential equation with 3 boundary conditions. The "extra" one helped us pin down the constant (ξ / ϵ) .
- Here, we want to solve for <u>both</u> ξ and ϵ . Thus, we need a **4th** boundary condition...
 - 1. $\eta(1) = 1$ (at the top of the loop, we've defined *T* to be at its maximum value)
 - 2. $\eta'(1) = 0$ (there should be symmetry at the top, with *T* remaining smooth)
 - 3. $\eta(0) \approx 0$ (note that $(10^4/10^6)^{7/2} \approx 10^{-7}$, which is pretty close to zero)
 - 4. $\eta'(0) \approx 0$ (essentially assumes that \mathbf{q}_{cond} is negligible at the base, too)

Coronal energy balance $\epsilon \frac{\partial^2 \eta}{\partial x^2} + \xi - \eta^{\mu} = 0$

- When we neglected radiation, we had a 2nd order differential equation with 3 boundary conditions. The "extra" one helped us pin down the constant (ξ / ϵ) .
- Here, we want to solve for <u>both</u> ξ and ϵ . Thus, we need a **4th** boundary condition...

1. $\eta(1) = 1$ (at the top of the loop, we've defined *T* to be at its maximum value)

- 2. $\eta'(1) = 0$ (there should be symmetry at the top, with *T* remaining smooth)
- 3. $\eta(0) \approx 0$ (note that $(10^4/10^6)^{7/2} \approx 10^{-7}$, which is pretty close to zero)
- 4. $\eta'(0) \approx 0$ (essentially assumes that \mathbf{q}_{cond} is negligible at the base, too)
- Define $q = d\eta/dx = \eta'$ then multiply both sides by q. Integrate over x, and use tricks...

$$\int dx \ q \ \frac{dq}{dx} = \int q \ dq = \frac{q^2}{2} \qquad \text{and} \qquad \int dx \ q \ f(\eta) = \int d\eta \ f(\eta)$$

$$\epsilon \, \frac{\partial^2 \eta}{\partial x^2} \, + \, \xi \, - \, \eta^\mu \; = \; 0$$

$$\int dx \ q \ \frac{dq}{dx} = \int q \ dq = \frac{q^2}{2} \qquad \text{and} \qquad \int dx \ q \ f(\eta) = \int d\eta \ f(\eta)$$

• If we do these integrals and use both bottom boundary conditions ($\eta(0) = 0$, $\eta'(0) = 0$), we get

$$\frac{\epsilon q^2}{2} = \frac{\eta^{\mu+1}}{\mu+1} - \xi \eta$$

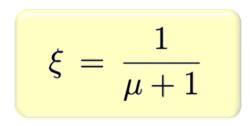
$$\epsilon \frac{\partial^2 \eta}{\partial x^2} + \xi - \eta^{\mu} = 0$$

$$\int dx \ q \ \frac{dq}{dx} = \int q \ dq = \frac{q^2}{2} \qquad \text{and} \qquad \int dx \ q \ f(\eta) = \int d\eta \ f(\eta)$$

• If we do these integrals and use both bottom boundary conditions ($\eta(0) = 0$, $\eta'(0) = 0$), we get

$$\frac{\epsilon q^2}{2} = \frac{\eta^{\mu+1}}{\mu+1} - \xi \eta$$

• We can integrate one more time to get η as a function of x, but note that if we apply the top boundary conditions ($\eta(1) = 1$, $\eta'(1) = q(1) = 0$), to this, we get



which gives us one of our main unknowns (i.e., one of the two "RTV scaling laws")

• How to integrate one more time? Note that

$$\frac{\epsilon q^2}{2} = \frac{\eta^{\mu+1}}{\mu+1} - \xi \eta$$

is equivalent to

$$q = \frac{d\eta}{dx} = \sqrt{\frac{2}{\epsilon} \left(\frac{\eta^{\mu+1}}{\mu+1} - \frac{\eta}{\mu+1}\right)}$$

• How to integrate one more time? Note that

$$\frac{\epsilon q^2}{2} = \frac{\eta^{\mu+1}}{\mu+1} - \xi \eta$$

is equivalent to

$$q = \frac{d\eta}{dx} = \sqrt{\frac{2}{\epsilon} \left(\frac{\eta^{\mu+1}}{\mu+1} - \frac{\eta}{\mu+1}\right)}$$

and we can integrate over the whole loop (x = 0 to 1) to get

$$\int_{0}^{1} \frac{d\eta}{\sqrt{\eta^{\mu+1} - \eta}} = \sqrt{\frac{2}{\epsilon(\mu+1)}} \int_{0}^{1} dx$$

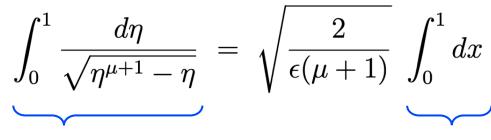
• How to integrate one more time? Note that

$$\frac{\epsilon q^2}{2} = \frac{\eta^{\mu+1}}{\mu+1} - \xi \eta$$

is equivalent to

$$q = \frac{d\eta}{dx} = \sqrt{\frac{2}{\epsilon} \left(\frac{\eta^{\mu+1}}{\mu+1} - \frac{\eta}{\mu+1}\right)}$$

and we can integrate over the whole loop (x = 0 to 1) to get



Just a number! For $\gamma = 0.5$, $\mu = -5/7$, and the integral is $\approx 2.51199...$

This gives us a value for ϵ . For $\gamma = 0.5$, $\epsilon \approx 1.1093...$

Just 1!

- Having values for both ϵ and ξ allows us to specify the <u>two</u> RTV scaling laws.
- One sees them in different forms. Coming directly from the constants, we get

$$P_0^2 L^2 \propto T_{\text{max}}^{(11/2)+\gamma}$$
 and $P_0^2 \propto E_h T_{\text{max}}^{2+\gamma}$

- Having values for both ϵ and ξ allows us to specify the <u>two</u> RTV scaling laws.
- One sees them in different forms. Coming directly from the constants, we get

$$P_0^2 L^2 \propto T_{\max}^{(11/2)+\gamma}$$
 and $P_0^2 \propto E_h T_{\max}^{2+\gamma}$

• However, I prefer to rearrange... to solve for things we **don't know** in terms of things we **do know...**

$$T_{\rm max} \propto E_h^{2/7} L^{4/7}$$
 and $P_0 \propto E_h^{(11+2\gamma)/14} L^{(4+2\gamma)/7}$
SAME scaling relation that we got from assuming

- Martens (2010) adds in the wrinkle of a heating rate that depends on position... indirectly, via *T* and *P* (or *T* and ρ). (These are the α and β exponents)
- There may also be flux-tube expansion from base to apex... this is included as the δ exponent.
- Martens also shows how the position dependence of all quantities can be found by integrating <u>*not*</u> all the way from 0 to 1.
- In the hands-on python notebook, I also show how all this can be written in terms of my Q_{heat} (i.e., Poynting flux times an efficiency factor):

$$HP^{b}T^{a} = H\left(\frac{k_{\rm B}}{\mu m_{\rm H}}\right)^{b}\rho^{b}T^{a+b} = \mathcal{E}_{0}\lambda_{\rm ph}^{n-m}L^{m-n-1}u_{\rm ph}^{m+1}\left(B_{0}/\sqrt{4\pi}\right)^{2-m}\rho^{m/2}\left(\frac{T_{0}}{T}\right)^{\delta(2-b)}$$

Too many symbols! This isn't Martens' μ .
It's the mean mass per particle, in units of
hydrogen. For the fully ionized corona, $\mu \approx 0.6$.

The python notebook

handson_corona_v1.ipynb

- Pinned at the top of the #paper-2-discussion channel on the Slack.
- Also posted on course web page (under today's date in schedule).

For next week

- Work on your **extension** of what's in the notebook... e.g., answering questions posed therein, making modifications, adding new physics, re-implementing in a better programming language, etc... really whatever you would like to do that helps you understand coronal heating better.
- Due in 2 weeks (Thursday, February 10, 2022)
- I'll create a Slack channel for discussions about this work, but if you want to just submit your final result to me via email (or Canvas for CU students), that's fine, too.

