
Radiative Processes II: Beyond Classical Stellar Atmospheres

We gleaned a lot of insight from the previous study of idealized stellar
atmospheres. However, the wider world of astrophysics contains environments

that are:

(1) Non-gray / Non-Eddington / Non-plane-parallel / Non-LTE

(2) Dominated by spectral lines (bound-bound transitions)
(3) Dominated by ionization & recombination (bound-free transitions)

(4) Irradiated from outside (e.g., planets & comets)
(5) Influenced by energy/momentum exchange between light & matter

We probably won’t get through all of this material in class....

Non-gray effects

We discussed how κν has lots of structure vs ν (e.g., sharp lines, bound-free
edges, slow free-free variations).

We need to confront the reality that radiative equilibrium isn’t so trivial any
more. The gray 0th moment equation was essentially

dH

dz
= −κρ(J − B)

and it’s still valid for the monochromatic (subscript ν) quantities. However,

this is really

d

dz

∫ ∞

0

dν Hν = −ρ
[∫ ∞

0

dν κνJν −
∫ ∞

0

dν κνBν

]

.

For a plane-parallel atmosphere, conservation of energy gives LHS = 0, and
thus RHS = 0. That’s still true, but it does not mean that

dHν

dz
= 0 or Jν = Bν (at all values of ν).

Photons can “migrate” around in frequency, maintaining the integrated
radiative equilibrium while violating it at any given ν.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Next, how do we relate “gray” results to the real non-gray world?

Examining the frequency dependence of the next higher moment equation
helps us define the Rosseland mean opacity.

Gray version: H =
dK

dτ
= − 1

ρ〈κ〉
dK

dz
= − 1

ρ〈κ〉

∫ ∞

0

dν
dKν

dz
.

The more general non-gray version is: Hν = − 1

ρκν

dKν

dz
.

If we integrate the non-gray version over all frequencies, we get

H =

∫ ∞

0

dν Hν = −1

ρ

∫ ∞

0

dν
1

κν

dKν

dz

However, we already have the gray version of H (above), so we can solve for

1

〈κ〉 =

∫
dν 1

κν

dKν

dz
∫
dν dKν

dz

That’s nice, but we don’t know the weighting function (dKν/dz) a-priori.

Deep in the atmosphere (where it’s close to LTE, and Iν is close to isotropic),

we can approximate

Kν ≈ 1

3
Jν ≈ 1

3
Bν so,

dKν

dz
≈ 1

3

dBν

dz
≈ 1

3

dBν

dT

dT

dz
.

The (1/3)dT/dz term appears in both numerator & denominator of 〈κ〉, and
it’s independent of ν so can be taken out.

Thus,
1

〈κRoss〉
≡

∫
dν 1

κν

dBν

dT
∫
dν dBν

dT

More weight is given to regions where κν is low (i.e., where the most radiation
is transported out, and not blocked).

This type of weighting applies well in stellar interiors, too.
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Non-Eddington effects

Even if we were to assume that other approximations (gray, plane-parallel,
LTE) were okay, we saw that the Eddington approximations gave rise to a

non-self-consistent solution for I(µ, τ).

If the source function is known, we saw that

J(τ) =
1

2

∫ +1

−1

dµ I(µ, τ)

=
1

2

∫ +1

0

dµ

∫ ∞

τ

dt

µ
S(t) e(τ−t)/µ − 1

2

∫ 0

−1

dµ

∫ τ

0

dt

µ
S(t) e(τ−t)/µ .

Exchanging the order of integration, we can use absolute values to combine

both pieces into a single integral. It ends up looking like

J(τ) =
1

2

∫ ∞

0

dt S(t)E1(|t− τ |)

where the first exponential integral is used, with

E1(x) =

∫ ∞

1

dy

y
e−xy and we used y = ±1

µ
.

This integral appears frequently enough to call it an “operator” on the source
function:

Λτ [S(t)] ≡
1

2

∫ ∞

0

dt S(t)E1(|t− τ |)

Thus, if we have already written

S = (1− a)B + aJ = ǫB + (1− ǫ)J

(a = albedo ... ǫ = 1− a = photon “destruction probability”)

then we can write the Schwarzschild-Milne Λ-iteration equation for S,

S(τ) = ǫB(τ) + (1− ǫ)Λτ [S(t)]

and one can refine S as many times as desired by repeating the iteration
process, then substitute it back into the formal solution to get an improved

I(µ, τ).
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Unfortunately, Λ iteration is hopelessly slow, especially deep in the
atmosphere. Deep down, it can take ∼ eτ iteration steps to converge!

There are numerical tricks that can be used to obtain better “accelerated

Lambda iteration” (ALI). Many stellar atmospheres codes use them.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The { gray, LTE, plane-parallel } model does have an exact solution, that
doesn’t rely on the Eddington approximation.

Eberhard Hopf worked it out in the 1930s. In general, we can write

J(τ) ∝ τ + q(τ)

where q = 2/3 in the Eddington/gray model, but in general the self-consistent

Hopf function q(τ) isn’t constant.

For pure scattering (ǫ = 0), we know J = S, so the Λ-iteration process gives

τ + q(τ) =
1

2

∫ ∞

0

dt [t+ q(t)]E1(|t− τ |)

and if we solve this integral equation for q(τ), we’ve solved the non-Eddington
gray atmosphere problem exactly.

In practice, a convenient way to solve for it is to use the
Wick–Chandrasekhar method of discrete ordinates.

That’s a mouthful to say it’s a generalization of the 2-stream model to having

multiple “wedges” of µ-space occupied by constant values of I.

Integrating over µ is optimized via “Gaussian quadrature” (see, e.g.,

Numerical Recipes, §4.5).

The upshot: E1 functions go away, and in each wedge, the formal solution

gives Ii = kie
−σiτ , and there’s a set of simultaneous eigenvalue equations for

the (ki, σi) coefficients.
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The Hopf function can be expressed in the form of closed-form integrals
(Mark 1947, Phys. Rev., 72, 558). Numerical solution:

At the surface, there is an exact result: q(0) = 1/
√
3 ≈ 0.57735...

Thus, a better version of Eddington’s 2nd approximation would have been

J = 3H[τ + q(τ)] = 3H

(

0 +
1√
3

)

=
√
3H ≈ 1.732H

and this is closer to the iterated value of 1.75H than the original 2H.
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Non-plane-parallel effects

The plane-parallel version of radiative equilibrium (F ≈ constant) was justified
for stars having scale heights H ≪ R∗.

Some stars (giants & supergiants) have low enough surface gravity that this is
no longer the case, and we must deal with the full spherical dependence of

∇ · Frad = 0 =⇒ Frad = L∗/(4πr
2) .

If one uses the two-stream approximation for the radiation field and models
the moments of I(µ) by integrating over the “visible disk” of a star seen from

r > R∗, we find J = H = K in the limit of r → ∞.

Recall that F = 4πH. At surface, note that J = 3K and J = 2H.

The geometrical factor in J is called the dilution factor:

W (r) =
1

2
− 1

2

√

1− R2
∗
r2

As r → ∞, W → R2
∗

4r2

and is used often in models of H II regions & Strömgren spheres.
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Non-LTE effects

This is an important one, since we’ll see that our imposition of LTE
all the way up to the surface (τ = 0) was a very bad approximation.

Near the surface, escaping photons are truly “lost;” i.e., not replenished from a
locally Planckian population (like they would be if LTE was true).

When there is scattering (ǫ < 1 in source function), photons can interact with
matter without being immediately absorbed & re-emitted in thermal

equilibrium with the gas.

Thus, non-LTE can be a very non-linear and non-local problem.

In any case, S 6= B 6= J , and usually it’s tackled numerically.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

However, there is a nice model that illustrates many non-LTE effects. Let’s

look at the “Milne–Eddington” model1 for an atmosphere in which we
make the following assumptions:

• Plane-parallel

• Not gray, but we’ll leave off monochromatic ν subscripts

• Eddington’s 1st approximation (J = 3K)

• Eddington’s modified 2nd approximation (J =
√
3H)

• General source function with absorption & coherent/isotropic scattering:

S = ǫB + (1− ǫ)J

where we assume ǫ = constant with depth

• Linear dependence of the Planck function with depth:

B(τ) = a+ bτ (in LTE, b/a = 3/2 ... exact Hopf @ surface: b/a =
√
3)

If we’re careful about our approximations, we can go back to the moment

equations and derive something much more general than what we got before.

1I use scare-quotes because this will be only a piece of it. The complete M–E model accounts for spectral line formation,
but with the same foundational equations developed here; see also Dietz & House (1965, ApJ, 141, 1393).
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0th moment of RT:
dH

dτ
= ǫ (J −B)

1st moment of RT:
dK

dτ
= H −→ Eddington’s 1st:

dJ

dτ
= 3H

Combining these two 1st-order ODEs into one 2nd-order ODE...

d2J

dτ 2
= 3

dH

dτ
= 3ǫ (J −B)

Because B(τ) is “only” linear, then d2B/dτ 2 = 0, and

d2

dτ 2
(J −B) = 3ǫ (J −B)

and it’s straightforward to integrate it, and apply the proper boundary
conditions (Eddington’s 2nd at surface; J → B at depth), to get

J(τ) = B(τ) +
(b/

√
3)− a

1 +
√
ǫ

e−τ
√
3ǫ

and we can compute S(τ), then get I(µ, τ) from the formal solution.

Note: J 6= B in the “upper” atmosphere! Example plots of (J −B) vs. τ :

We get LTE back (J = B) when b/a =
√
3, but real non-LTE atmospheres can

run the gamut from steeper (b/a≫ 1) to isothermal (b/a = 0) to “inverted”
(b/a < 0).
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Notes:

(1) H 6= constant, but recall this is a monochromatic Hν . Some regions of the
spectrum may produce “radiative heating” (Jν > Sν) and some may produce

“radiative cooling” (Jν < Sν), but bolometric flux needs to be conserved.

(2) The depth at which J → B is not the usual photosphere (τ ≈ 1).

For ǫ≪ 1, the atmosphere is effectively thick (i.e., effectively LTE) only
below a

thermalization depth τth ≈ 1√
ǫ
.

Think about what it means when the destruction probability ǫ is ≪ 1.

A photon “created” thermally can scatter many times (N ≈ 1/ǫ≫ 1) before it

is truly absorbed.

Between scatterings, a photon travels ∼ 1 mean free path (ℓmfp ≈ 1/χ).

After scattering N times, undergoing random changes in direction each time,
the net vertical distance traversed via random walk is ∆z ≈ ℓmfp

√
N .

Deep in the atmosphere, an approximate way to define the optical depth is

τ ≈ χ∆z ≈ ∆z/ℓmfp. Inserting the random-walk constraint gives τ ≈ τth .

Distinction between optical depth & thermalization depth:

• Looking down into an atmosphere, we see photons that had their last

“encounter” with matter at τ ≈ 1.

• If ǫ ≈ 1, then that last encounter was likely a local thermal emission.

• If ǫ≪ 1, then that last encounter was likely a scattering. The thermal

layer that generated the photon was typically much deeper, at τ ≈ τth.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This is important in hot stars, with photospheres dominated by Thomson

scattering of free electrons (ǫ ∼ 10−4), so LTE is only recovered at τ ∼> 100.

For cool, solar-type stars, photospheric opacity is dominated by H− absorption,
so ǫ ≈ 1 and the photosphere is ∼LTE.
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SPECTRAL LINES

By far, lines are the most useful diagnostic of physical properties.

We need to know more about:

• Line formation: How do we determine the “line strength” χL for a

specific transition between two bound e− levels?

• Line broadening: How do we determine the shape of φ(ν) for a given
plasma environment?

• Line radiative transfer: How does that extra opacity affect the

emergent Iν from a stellar atmosphere?

We know that each unique pair of discrete energy levels in an atom
corresponds to a given spectral line.

Consider lower level (1) and upper level (2).
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A21, B21, and B12 are the Einstein coefficients for the three radiative processes.

The fundamental one is A21 (units of 1/s), and it’s kind of like the inverse
lifetime (or ‘half-life’) of the upper level.

The induced B rates are multiplied by the “local” radiation field, and they

usually don’t care about the direction; just mean intensity.

We define J̄ =

∫

dν φ(ν) Jν (weighted by the line opacity) .

Outgoing photons:

For A21: the resulting radiation field Iν is usually isotropic.

For B21: the incoming photon is not absorbed. It’s ejected along with its newly
created “twin.” That new outgoing photon has same energy, n̂, & polarization

as incoming one. (Strictly, it’s the incoming one that happens to have the
same properties as the outgoing one that the atom “wants” to eject!)

12.11



The C12 and C21 collision rates are defined similarly to A21. They depend on
microscopic cross sections for electron impact excitation...

C12 =
1

τcoll
≈ 〈neσ12v〉 =

∫

d3v fe(v) σ12v = ne q12(Te)

and σ12 is measured (or computed) as a function of the kinetic energy in the
collision reference frame (∝ v2).

If we’re in a time-steady equilibrium state (not necessarily STE or LTE), then

the total number of 1→2 events should be balanced by the total number of
2→1 events. This is statistical equilibrium:

n1(B12J̄ + C12) = n2(A21 +B21J̄ + C21)

In practice, when we know the rates (i.e., ρ & T ) and the radiation field, then

we can solve for the ratio of level populations n2/n1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In “thermalized” environments:

• If we are in STE or LTE, the gas and radiation field would be coupled
together, and J̄ = Bν0(T ). In LTE, we also know that

ni ∼ gi exp

[

− Ei

kBT

]

=⇒ n2
n1

=
g2
g1

exp

[

−E2 − E1

kBT

]

=
g2
g1
e−hν0/kT

where we must remember that ni is the zeroth moment of the Maxwellian
distribution of atoms in state i, with

f ∝ e−Etot/kT , and Etot =
1

2
mv2 + Ei ,

and gi are the statistical weights (multiplicities) of each level i, i.e., the

number of unresolved quantum sub-levels.

The above is Boltzmann’s excitation formula. In LTE, there is a
Maxwellian distribution of energy levels. Higher-energy states are

populated less frequently than lower ones.
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• If the local electron f(p) is Maxwellian, then collisions set up a
Maxwellian-like distribution of energy changes, too. This implies a
relationship between upward and downward collisions,

C12

C21
=

g2
g1
e−hν0/kT

In general, we have that C21 > C12, which makes sense because it is easier

for collisions to destabilize an upper state (make it decay) then it is for a
collision to add just the right amount of energy to boost a bound electron
up to the higher level.

For T → 0, C12 <<< C21, since free electrons in such a cold environment
would never hope to impart enough energy to excite the atom from 1 to 2.

For T → ∞, everything is in strong collisional balance, with g1C12 = g2C21.

In LTE, both of the above conditions are true, and we see that

n1C12 = n2C21 and n1B12J̄ = n2(A21 + B21J̄)

These 2 separate conditions are called detailed balance. In LTE, particles &
photons obey separate balances (rate ↑ = rate ↓).

We can use this in the full detailed balance expression, along with Boltzmann’s
formula, to solve for

J̄ =
n2A21

n1B12 − n2B21
=

A21/B21

(g1B12/g2B21)ehν0/kT − 1
.

This is the radiation field needed to maintain time-steady detailed balance

while also in LTE. But if we’re really in LTE, then we know

J̄ = Bν0(T ) =
2hν30/c

2

ehν0/kT − 1
at all temperatures,

and thus the Einstein relations must hold:

B12

B21
=

g2
g1

A21 =

(
2hν30
c2

)

B21 .

These relations do not depend on T or any other property of the environment;

only on atomic physics. The Einstein relations are valid even not in LTE!

This can be a tough step to accept. If you want to see it proven

rigorously—using quantum probabilities & Fermi’s golden rule—see Hubeny &
Mihalas (2015), Theory of Stellar Atmospheres, § 5.3–5.4.
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Once we know the rates, we can compute the other things we need to solve the
equation of radiative transfer...

Line formation: We want to compute both the opacity & emissivity due to a

spectral line:
χν = χL φ(ν) φ(ν) = absorption profile
jν = jL ψ(ν) ψ(ν) = emission profile

Often, φ = ψ, and these have units of 1/frequency. Thus, they appear on the

RHS of the radiative transfer equation with the following units:

∂Iν
∂z

= (jL − χLIν)φ ❀ jL =
dE

dt dΩ (dA dz)
.

But we already know the rate of creation of new photons (in this line):

n2A21 =
#

dt dV

and we can take this back to the units of jL by noticing that dE = #hν0. Also,

since the photons are emitted in all directions, we can also write dΩ = 4π, and
this gives

jL =
hν0
4π

(n2A21) .

Similarly, opacity involves processes that absorb incoming photons. Thus,

χL =
hν0
4π

(n1B12 − n2B21)

Note that stimulated emission is treated as “negative absorption.” It’s counted

in with opacity because it’s ∝ the radiation field, just like direct absorption.
(However, it’s a net creator of photons.)

Thus, the line’s source function is given by

Sν =
jν
χν

=
jL
χL

=
n2A21

n1B12 − n2B21

(and note that this is the value for the whole line).

Because it’s based on “bookkeeping” (processes that generate photons &
processes that destroy them), the above is always true.

In non-LTE, one can use all of the above definitions to write

Sν = (1− aν)Bν + aν J̄ aν ≡ A21

A21 + C21(1− e−hν0/kT )
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and now we’ve defined the albedo aν (and thus the photon destruction
probability ǫν = 1− aν) in terms of the properties of each spectral line.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In non-LTE, one often sees the level populations written using Donald
Menzel’s departure coefficients,

bi =
ni (actual)

ni (LTE)

and one can show that for a two-level atom, Sν =
2hν30/c

2

(b1/b2)ehν0/kT − 1

which means that Sν = Bν for b1 = b2 = 1.

For strong resonance lines in non-LTE upper atmospheres, we often see

(b1/b2) ≫ 1. Some implications are:

• Because photons escape so easily “at the top,” we have Sν < Bν.

• n1 is overpopulated and n2 is underpopulated, because photons tend to get
“lost” when they’re more excited, so the upper levels get drained.

Which rates dominate?
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Notes on Spectral Line Radiative Transfer

1. Simplified Line Formation

A simple, but instructive, way to think about the formation of spectral lines is the Schuster

reversing layer model (Schuster 1905, ApJ, 21, 1; see also Mihalas 1999, ApJ, 525C, 25).

The spectral line (i.e., a particular transition from one bound electron energy level in an element to
another energy level) is assumed to be formed in a “cloud” of gas sitting “above” the main source of
radiation. That main part—which has traditionally been thought of as a dense stellar photosphere,
but can be any other background radiation source—is assumed to produce a broad spectral
continuum.

We also assume that the properties of the line-absorbing (or line-emitting) gas are constant
throughout the cloud. If the thickness of the cloud is given by ∆z, then the dimensionless optical
depth in the cloud can be written

τν = κνρ∆z = κLφ(ν)ρ∆z , (1)

where ν is the photon frequency, κν is the absorption coefficient in units of cross section per unit mass
(e.g., cm2 g−1), and ρ is the mass density. For convenience, we write the absorption coefficient as
κLφ(ν), which separates the total line opacity κL from the line broadening function φ(ν).

The solution for the specific intensity Iν that emerges from the Schuster cloud is given by

Iν = I0νe
−τν + Sν(1− e−τν ) , (2)

where I0ν is the intensity of the continuum that enters the cloud from below and Sν is the so-called
source function of the cloud; it takes account of the local properties of the cloud that would make it
“glow” on its own, even in the absence of an external source of radiation.

We can continue to make simplifying approximations about these two intensity parameters, and in
many cases it is useful to to think about them as blackbody Planck spectra. Thus, let us use the
shorthand

I0ν ≈ BC(TC) , Sν ≈ BL(TL) , (3)

where the subscript “C” denotes the conditions in the background medium where the continuum is
formed, and “L” denotes the conditions in the Schuster cloud where the line is formed. In LTE,
B ∝ T 4, so we can rewrite equation (2) in terms of the dimensionless residual intensity rν as

rν =
Iν
I0ν

= e−τν +

(
TL

TC

)4

(1− e−τν ) . (4)

One can see that if the temperature in the cloud is lower than the temperature in the underlying
continuum photosphere (i.e., TL/TC < 1) that rν < 1 and we will have an absorption line. Conversely,
if the cloud is hotter than the underlying continuum region, we will have an emission line with rν > 1.
Weak, optically thin lines, with τν ≪ 1 for all frequencies, have a residual intensity that simplifies to

rν ≈ 1 +

[(
TL

TC

)4

− 1

]

τν . (5)
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In the cores of strong lines, where τν ≫ 1, the line is saturated, with

rν ≈
(
TL

TC

)4

, (6)

and cold absorbing layers (TL/TC ≪ 1) produce saturated absorption lines with nearly “black” cores.

If we look “above the limb” and our line-of-sight passes only through the cloud (and not through the
underlying photosphere), we have to go back and not divide by I0ν (since it’s zero),

With I0ν = 0, Iν = BL

(
1− e−τν

)
≈ τνBL (for weak lines with τ0 ≪ 1)

and thus there will be an emission line on top of “nothing” (instead of on top of a continuum with
rν = 1)

We characterize a line’s total amount of absorption or emission by integrating over frequency. Thus,
we define the equivalent width

Wν =

∫

dν (1− rν) . (7)

Note that in this case the subscript ν does not mean that Wν is a function of ν, but it is there to
convey that this quantity has units of frequency (as opposed to the wavelength version of equivalent
width, Wλ). For the standard case of a cold cloud that produces an absorption line, we see that as
the number of atoms in the line-forming cloud increases, the line gets deeper, and the (positive
definite) equivalent width grows in magnitude. The dependence of Wν on the total line opacity
(measured by some combination of κL and ρ) is known as the curve of growth, and its shape allows
us to diagnose many useful details about the line-forming region.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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2. Line Broadening Processes

The shape of the curve of growth depends crucially on the line broadening function φ(ν). The
simplest possible picture of atomic transitions assumes that the two energy levels—let us label the
lower level 1 and the upper level 2—have precisely known energies E1 and E2. Thus, the transition
occurs only when photons of a single frequency ν12 are involved, with

E2 − E1 = hν12 (8)

where h is Planck’s constant. We know this is an idealization of the true quantum mechanical
processes going on in bound atomic electron clouds, but for now let us assume it to be the case. In
this case, for observers sitting in the rest frame of the atom that is emitting or absorbing a line
photon, there is no line broadening at all. This observer will see only line photons at a single
frequency that we will call νobs. The profile function is a Dirac delta function,

φ(νobs) = δ(νobs − ν12) . (9)

that is equal to zero for all νobs 6= ν12. Note that, by convention, φ(ν) has units of 1/frequency, or
Hz−1.

However, in a cloud of gas with a finite temperature, the individual atoms are all moving around with
random velocities in 3D space. In kinetic theory we describe the microscopic motions of the atoms
with a distribution function f written as a function of the particle vector momentum p. In most
“well-behaved” systems this function is a Maxwell-Boltzmann distribution,

f(p) =
n

(2πmkT )3/2
exp

(

− p2

2mkT

)

(10)

where m is the particle mass, n = ρ/m is the number density, k is Boltzmann’s constant, T is the
temperature, and for non-relativistic speeds, p2 = m2(v2x + v2y + v2z). If we assume that this cloud of
randomly moving atoms is being viewed by a stationary observer, along a line-of-sight that is parallel
to, say, the x–axis, then whenever vx 6= 0, each atom that emits a photon with frequency ν12 in its
local rest frame will give rise to a photon that is slightly Doppler shifted in the observer’s frame. This
Doppler effect produces a shifted line profile function,

φ(νobs) = δ
(

νobs − ν12 +
ν12vx
c

)

(11)

where we define vx > 0 as motion away from the observer and vx < 0 as motion toward the observer.

Equation (11) is valid for a single atom that has a projected velocity of vx in the observer’s
line-of-sight direction. However, we would like to average over the entire velocity distribution to
obtain a mean line profile function for the absorbing medium. Thus, we define

〈φ(νobs)〉 =

∫
d3p f(p)φ(νobs)
∫
d3p f(p)

. (12)

For the Maxwellian distribution, the denominator in the above integral is just the number density n.
The numerator is slightly more complicated to evaluate, but one can separate the exponential in f(p)
into multiplicative terms that are functions of only vx, vy, and vz, so the integrals in all three
dimensions of “momentum space” can be done separately. The vy and vz integrals can be reduced to
standard definite integrals over a Gaussian function that can be looked up. The vx integral involves
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the Dirac delta function, whose argument must be transformed from frequency units to momentum
units. The details can be found in several radiative transfer textbooks, and the result is

〈φ(νobs)〉 =
1

∆νD
√
π
e−x2

(13)

where we define the dimensionless line frequency x and the Doppler width ∆νD as

x =
νobs − ν12

∆νD
, ∆νD =

ν12
c

√

2kT

m
. (14)

Equation (13) gives the line profile function for pure Doppler broadening.

Above, it was mentioned that the Dirac delta function form of the atomic rest-frame profile function
was just an idealization. In reality, there are several effects that can make the atomic energy levels
“fuzzy.” First, there is just the Heisenberg uncertainty principle, which limits our knowledge of the
energy of a state that has a finite lifetime. Recall that one form of the uncertainty principle is

∆E∆t ∼ h (15)

where for a photon, an uncertainty in its energy means that there is an uncertainty in its frequency,
∆E = h∆ν. If the excited state only lives for a finite lifetime ∆t = 1/γ, then we know that we cannot
know the photon’s energy (i.e., frequency) to better than an uncertainty given by ∆ν ≈ γ. One can
show that the profile function in the atom’s rest frame is then “fuzzed out” in frequency, and φ(ν)
must be interpreted as a probability distribution of finding the photon at any specific frequency.

The uncertainty principle provides a finite width to the profile, and quantum mechanical calculations
show that it becomes a naturally broadened Lorentzian function,

φ(νobs) =
γ/8π3

(νobs − ν12 + ν12vx/c)2 + (γ/4π)2
(16)

which reduces to equation (11) in the limit of γ → 0.

For the simple two-level atom discussed above, γ ≈ A21. In most astrophysical cases, pure natural
broadening produces a line width too narrow to worry about (i.e., γ ≪ ∆νD).

However, it should also be noted that there are several other physical processes, besides the natural
broadening discussed above, that also can give rise to a Lorentzian line profile. One of these is
collisional broadening, which takes account of the fact that the gas is not just filled with that one
atomic species that is doing the emitting and absorbing. A higher total pressure in the system
(especially from free electrons that zip around with high speeds) produces a higher rate of collisions
between the emitting atoms and their neighbors. This can enhance the effective value of γ by several
orders of magnitude above the natural broadening level.

For whatever non-zero value of γ is present in the atom’s rest frame, we want to know how it
combines with the Maxwell-Boltzmann Doppler broadening discussed above. We must insert the
single-atom profile function given in equation (16) into the mean-profile integral of equation (12).
Unfortunately, there is no simple closed-form solution to that integral, but astronomers have defined a
new two-parameter special function, known as the Voigt function, that encapsulates the difficult
integral. The profile is given by

〈φ(νobs)〉 =
H̃(a, x)

∆νD
(17)
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and the normalized version of the Voigt function is defined as

H̃(a, x) =
a

π3/2

∫ +∞

−∞

dy e−y2

(x− y)2 + a2
. (18)

Algorithms for computing the Voigt profile have been described by, Armstrong (1967, JQSRT, 7, 61);
Letchworth & Benner (2007, JQSRT, 107, 173), and others. Above, x and ∆νD have the same
meanings they did for Doppler broadening, and the dimensionless “damping constant” a = γ/(4π∆νD)
is a ratio that conveys the relative importance of the two sources of line broadening. When a ≪ 1, the
profile is mostly Doppler broadened and Gaussian. When a ≫ 1, the profile is mostly Lorentzian.
Note that H̃(0, x) = e−x2

/
√
π, so that equation (17) agrees with equation (13) in the limit of a → 0.

Figure 1 (top) shows several Voigt profiles for a set of example values of a, and compares them to the
Gaussian function limit of a = 0. These plots show the dimensionless profiles given by ∆νD〈φ〉. Note
that these profiles are defined such that

∫

dν 〈φ〉 = 1 . (19)

Also, the middle panel of Figure 1 shows a set of residual line profiles rν as a function of x, all having
Voigt profiles with a = 0.1 and computed for a range of optical depth normalization parameters τ0
(see below).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. Evaluating the Curve of Growth

Finally, we want to evaluate the shape of the curve of growth Wν as a function of total line opacity.
Let us redefine the total opacity by writing the optical depth as

τν = (κL ρ∆z)φ(ν) =
(
τ0∆νD

√
π
)
φ(ν) (20)

where τ0 is a properly dimensionless optical depth that characterizes the overall line strength, and we
have simplified the notation by writing 〈φ(νobs)〉 as φ(ν).

Let us evaluate the equivalent width Wν using equations (5) and (7). In general,

Wν = W0

∫

dν
(
1− e−τν

)
(21)

where we also define

W0 = 1−
(
TL

TC

)4

(22)

to scale out the environmental effects of the layer and background. In the limit of a very weak line
(τν ≪ 1), the integral becomes

Wν = (τ0∆νD
√
π)W0

∫

dν φ(ν) . (23)

As was noted above, the profile functions are defined to be normalized over frequency, so the integral
of φ(ν) over dν is equal to 1. Thus, weak lines exhibit Wν ∝ τ0 and are said to be in the linear part

of the curve of growth.
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Figure 1:

(TOP) Dimensionless Voigt profile function

φ(x) shown for a range of Lorentzian wing

parameters a (see key in bottom panel).

(MIDDLE) Example absorption profiles for

Schuster reversing layer model, with a =
0.1, BL/BC = 0.1, and a range of optical

depth parameters τ0.

(BOTTOM) Curve of growth integrated over

profiles shown in middle panel for the wing

parameters given in the top panel.
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For a line that is reasonably strong (i.e., optically thick) in its Doppler core, but still not showing
much absorption in its Voigt wings, we can use equation (13) for the profile function and write the
relevant integral as ∫

dν(1− e−τν ) = ∆νD

∫

dx
[

1− exp
(

−τ0e
−x2

)]

. (24)

This expression is difficult to evaluate, but when τ0 ≫ 1 the core of the line is sufficiently saturated
that one can approximate the integrand as

1− exp(−τ0e
−x2

) ≈
{

1 , |x| ≤ xhalf ,
0 , |x| > xhalf

(25)

where

xhalf =

√

ln
( τ0
ln 2

)

(26)

is the dimensionless frequency at which the above function is equal to 0.5. This value effectively
defines the boundary between the saturated core and the exponentially damped wings. With this
approximation, it becomes much easier to evaluate the integral, and

Wν ≈ 2W0 ∆νD xhalf (27)

and, since τ0 is assumed to be much larger than ln 2 in this limiting case, we have Wν ∝
√
ln τ0, which

is a slowly varying function that is often called the flat, or saturated part of the curve of growth.

As τ0 grows even larger, the optical depth becomes large even in the Voigt wings. Far from the line
core, the Voigt function can be approximated as φ(ν) ≈ a/x2. When that is plugged into the
definitions of τν and Wν , the curve of growth scaling can be shown to become Wν ∝ √

τ0, which
increases more slowly than linearly, but faster than in the flat part. This is called the square-root

part, or damping part of the curve of growth.

The bottom panel of Figure 1 shows the curve of growth for the same set of Voigt parameters a as
were shown in the top panel. For a ≪ 1 there is a definite flattening with increasing τ0, followed by
the onset of the square-root behavior due to the Voigt wings. For a ∼> 1, however, the curve

transitions directly from the weak linear behavior to the strong Voigt-wing square-root behavior.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Historically, the curve of growth was very useful in analyzing stellar atmospheres. Comparing
empirical to theoretical curves yields constraints on the T structure of the atmosphere and elemental
abundances. Curves of growth were used to determine the difference between Population I and II
stars.

In real life, nobody really does curve of growth analysis any more. It’s more straightforward to do
full-on spectrum synthesis and compare it to observed spectra.
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Final topics of the course:

1. Ionization & recombination in astrophysics

Examples: limiting cases of Saha, coronal, & nebular equilibrium

H II regions (“Stromgren spheres”)

2. Irradiated (planetary) atmospheres

Examples: mean temperatures of Earth & Venus
sublimation of ices from comets

3. Energy & momentum exchange between light & matter

Examples: radiation pressure & the Eddington limit
forces on dust grains in the solar system.
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Ionization & Recombination in Astrophysics

There are many environments for which we don’t really know anything until we
know how the elements are distributed among their ionization states.

Notation: H I = H0, H II = H+1, . . . , Fe XIV = Fe+13, . . .
but the chemical notation (X+n) refers to ions themselves, while the

Roman-numeral notation refers to their levels & lines.

If we’re writing the mass conservation equation for a given stage i, then

ionizations/recombinations act as source/sink terms:

∂ni
∂t

+∇ · (niui) = 0 ?

= ni−1Ii−1 − niIi − niRi + ni+1Ri+1

{
Ii = ionization rate

Ri = recombination rate

}

out of stage i, into stage

{
i+ 1
i− 1

}

(units: 1/s)

For element with atomic number Z, the index i goes from 0 (neutral) to

Z (fully stripped). There are Z + 1 coupled mass conservation equations.

Usually, R0 = 0 and IZ = 0 (unless there are weird states like H−).

For time-steady static equilibrium,

∂ni
∂t

= 0 and ui = 0 , so we can show that
ni+1

ni
=

Ii
Ri+1

What processes contribute to ionization & recombination?

Ii = CIi + PIi + AIi

Ri = 3BRi + RRi + DRi
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• PI and CI are kind of like the B12 and C12 types of excitation, but the

energy of the “bullet” now exceeds the ionization potential.

• RR is similar to A21 emission, but it’s not as “spontaneous.” It depends
on there being free electrons around, so the rate is ∝ ne.

• 3BR is similar to C21 de-excitation, but its rate is ∝ n2e. Only important in

high-density (LTE?) regions.

• DR is a two-stage process: (1) Free electron is captured into an excited
state, and some leftover energy excites another of the bound electrons.

Atom is in a doubly-excited state. (2) Then the excited state decays,
emitting a photon.

• AI shares the first stage of DR, but instead of decaying, the

highly/doubly-excited state may spontaneously kick out the newly bound
electron.

Processes that depend on the presence of electrons are often written, e.g.,

CIi +AIi = ne qi(T ) RRi +DRi = ne αi−1(T )

where q and α (in cm3/s) are the “rates” you may often find listed in books
and papers.

(Why αi−1? Convention... astronomers sometimes enumerate the
recombination rate by the stage it’s going into.)
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In many astrophysical environments, only a subset of the terms dominate the
total ionization/recombination balance:

High ρ / LTE Medium ρ Low ρ
(“Saha”) (“coronal”) (“nebular”)

Dominant terms in Ii PI CI CI + AI PI

Dominant terms in Ri RR 3BR RR+DR RR+DR

In LTE, there’s a similar detailed balance as with lines: particle collisions

balance themselves, and so do photon absorptions & emissions.

Doing the bookkeeping for either particles or photons (i.e., CI = 3BR, or

PI = RR, as long as Sν = Jν = Bν) gives the Saha ionization-balance
equation. The actual rates cancel out...

ni+1

ni
=

CIi
3BRi+1

=
2

ne λ3e

Ui+1

Ui
exp

(

−Ei+1 − Ei

kBT

)

where λe = h/
√
2πmekBT (thermal de Broglie wavelength of a free electron),

Ei is ground-state energy for stage i, and Ui is the partition function of stage i

(essentially a weighted mean of the bound g’s).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In hot (T ≫ 104 K) coronal plasmas, density is too low for LTE, and there’s
usually not a strong source of ionizing photons (so ignore PI). Thus,

ni+1

ni
=

CIi + AIi
RRi+1 +DRi+1

=
qi(T )

αi(T )
= a function of T only!

and the whole set of absolute ratios {ni/nelement} can be built up by knowing
all of the pairwise ratios. For example, oxygen:
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In very-low density regions (e.g., nebulae in the ISM) collisions are infrequent,
and it’s also far from LTE. PI is the main source of ionizations, and it’s driven
by any nearby source of “ionizing photons:”

PIi =

∫

dν
4πJν
hν

σν (verify units: ‘events/s’)

which depends on the photoionization cross-section σν for the ion in question.
Like its terrestrial cousin (the photoelectric effect), there’s an on/off threshold:

Typically, σν ≈
{

0 , hν < (Ei+1 − Ei)

1/ν3 , hν ≥ (Ei+1 − Ei)

The (mostly neutral) ISM absorbs a lot in the EUV (λ ≈ 100–900 Å).

The other part of PIi (4πJν/hν, integrated over ν) is the number of incident
photons per unit time, per unit area.

Consider diffuse ISM hydrogen illuminated by a hot star.

Notation: nH =
ρ

mH
= nn + np (neutrals + protons) np = ne

In nebular ionization equilibrium,

np
nn

=
PIn

ne αn(T )
❀ ❀ nn

∫

dν
4πJν
hν

σν = n2e αn
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If the region around the central star was a vacuum, then Jν ≈ Hν, and

4πJν = Fν =
Lν

4πr2

but the neutral gas absorbs photons! Thus, really,

4πJν =
Lν

4πr2
e−τν(r) where τν(r) =

∫ r

R∗

dr′ nn σν

Close to the star, τν ≪ 1, and much of the hydrogen will be ionized. But once

we reach a given distance away from the star (call it R0), ALL of the star’s
ionizing photons will have gotten absorbed (with τν ≫ 1), and the gas will be
neutral for all r > R0. The ionized bubble of radius R0 is called an H II region,

or a Strömgren sphere.

The ionization balance can be written:
∫

dν
Lν

hν
e−τν(r) nn σν = 4πr2 n2e αn .

To derive how big the sphere will be, integrate over r (out to R0):

∫ R0

R∗

dr

∫

dν nn σν
Lν

hν
e−τν =

∫ R0

R∗

dr 4πr2 n2e αn

• LHS: Note that dτν = nnσνdr, and we can change integration variables.
• RHS: Assume ne & T are constant in the sphere, and that R0 ≫ R∗.

∫ ∞

0

dτν e
−τν

︸ ︷︷ ︸
=1

∫ ∞

ν0

dν
Lν

hν
︸ ︷︷ ︸

≡Q∗

≈
(
4π

3
R3

0

)

n2e αn

Taking note that the integral over dν is zero for frequencies below the

ionization threshold ν0, the quantity Q∗ is the star’s “ionizing photon
luminosity” (in units of photons s−1).

Thus, R0 =

(
3Q∗

4π αn n2e

)1/3

which, for typical parameters of OB stars & the surrounding ISM, gives

R0 ≈ 50 pc, close to what is observed!
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Irradiated (Planetary) Atmospheres

The Eddington/gray atmosphere had 2 boundary conditions, though we didn’t
tend to think about them as such:

• From beneath: F = σT 4
eff = constant > 0.

• From above: I(µ < 0) = Idown = 0 (essentially J = 2H surface approx).

If we move on to thinking about a planetary atmosphere, both of those
boundary conditions change.

Ignoring internal heat generation (tides or radioactive decay!),
the total F can be zero, but Idown 6= 0.

Recall, of course, that these quantities are integrated over ν.

In isolated parts of the spectrum, Fν 6= 0.

Spectrally, we often see that F = 0 is maintained as a balance between:
{

Inward flux: from stellar irradiation (“short-wave”)
Outward flux: thermal re-radiation (“long-wave”)

}

For the Earth, these two sources of radiation occupy (essentially) separate

parts of the spectrum:
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When the short-wave & long-wave pieces of the flux cancel each other out, we
have |FSW| = |FLW| . We use this flux balance to determine the atmospheric
temperature structure of terrestrial planets.

(When Iup and Idown occupy the same part of the spectrum, the problem of
“irradiated atmospheres” gets more complicated. For a detailed pedagogical

sequence of useful toy models, see Hansen [2008, ApJ Suppl., 179, 484]).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For terrestrial planets, there are several ways to estimate FSW.

First, examine instantaneous insolation on a spherical planet:

At “noon” (θ = 0),

FSW =
L∗
4πr2

(1− A) ≡ Fmax

where r is the star–planet distance D. (Strictly, r = D − Rp.)

For us, the insolation flux (L⊙/4πr21AU) is called the “solar constant.”

A = the short-wave Bond albedo of the planet: the fraction of total incident

flux that is immediately reflected back into space (at “top of atmosphere”).

(Earth: A = 0.30, Venus: A = 0.77) Depends on cloud cover!

At other locations, FSW =

{
Fmax cos θ , on the day side

0 , on the night side.
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For a tidally locked planet, that’s all one needs. For a rotating planet, the
incoming flux is “spread around” in longitude [and a bit in latitude, if there’s
axis obliquity, but usually FSW(poles) ≪ FSW(equator)].

If we assume rapid redistribution of the incoming flux, we can compute the
average over the globe:

〈FSW〉 =
1

4π

∫

dΩ FSW(θ, φ) =
Fmax

4π

∫ 2π

0

dφ
︸ ︷︷ ︸

2π

∫ π/2

0

dθ sin θ cos θ
︸ ︷︷ ︸

1/2

=
Fmax

4
.

This may not correspond exactly to any one point on the planet, but it lets us
estimate surface-averaged quantities.

If the planet re-emits the absorbed radiation as something close to a
blackbody, the outgoing long-wave flux can be written as

FLW = η σT 4
eff

where η is a fractional emissivity (η = 1 for a perfect blackbody;
η < 1: “graybody.” Earth’s land/water surface has mean η ≈ 0.96).

We can thus compute the planet-averaged equilibrium temperature

〈FSW〉 = FLW =⇒ Teff =

[
L∗(1− A)

16πησr2

]1/4

∝ r−1/2 .

Earth: Teff ≈ 257K ≈ −16◦C.

Venus: Teff ≈ 229 K. Lower because of higher albedo!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note: some books take an “energy in = energy out” approach:

Ein =

[
L∗ (1− A)

4πr2

]

πR2
p , Eout =

(
ησT 4

eff

)
4πR2

p

which gives the same answer as above.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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This isn’t the end of the story because terrestrial planets can have
atmospheres. The deeper you go, the more opacity can “trap” photons...
the greenhouse effect.

When computing height dependence of “air temperature,” our standard
gray/Eddington result is still more or less valid:

Tair(τ) = Teff

[
3

4

(

τ +
2

3

)]1/4

and at the infrared λ’s of interest to the outgoing long-wave Planck function,
the near-surface values are

Earth: τ ≈ 1.4 −→ Tair ≈ 288K ≈ +15◦C
Venus: τ ≈ 140 −→ Tair ≈ 735K

which makes sense, if we know that Venus’ surface pressure is roughly 100

times that of Earth.

There are many other complications:

• Real atmospheres aren’t gray or Eddington. For CO2, strong-opacity

bands are surrounded by transparent spectral “windows.”

• Even for a very rapidly rotating planet, computing Tair as a function of
position demands including a latitudinal diffusion term (due mainly to

atmospheric & ocean dynamics). Gerald North’s classic (1975, JAtmSci,

32, 2033) energy-balance model reproduces lots of what we see on Earth...
including the possibility of “snowball” ice-age phases.

• Computing the “ground temperature” of the solid surface takes extra care.
It’s often > Tair, but simple models overestimate the discontinuity.

Lastly, when there’s an energy flux hitting a solid planet/asteroid/comet, there
are other things that can happen, besides re-radiating...
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Irradiated Phase Changes

Sublimation (solid → gas) or condensation/deposition (gas → solid).
Thus, there are 2 terms on the RHS...

FSW = η σT 4 +
Ṁ

4πR2
p

L

where L is the latent heat of sublimation (erg/g), which essentially converts
energy flux into mass flux.

Generally, L is a known constant for a given type of solid surface material.

Two unknowns on RHS:

{
equilibrium T

subliming mass-loss rate Ṁ

}

Chemistry to the rescue... we can combine two laws:
• Clausius-Clapeyron relation (surface vapor pressure as func. of T )

• Hertz-Knudsen relation (Ṁ per unit area as func. of vapor pressure)

to obtain
Ṁ

4πR2
p

≈ P∞

√
ms

kBT
exp

(

−msL
kBT

)

where P∞ is vapor pressure in T → ∞ limit, and ms is the mass of 1 molecule
of surface material (both known).

Solving the energy balance for T (r) usually isn’t possible analytically.
Limiting cases:

• “Cold” outer solar system (kBT ≪ msL): essentially too quiet for

sublimation (Ṁ → 0), so the long-wave re-radiation dominates, and

T ∼ r−1/2 as before.

• “Hot” inner solar system (kBT ∼> msL): the energy goes into the
phase-change (sublimation), not into heating it up. Thus,

Ṁ ∼ 1/r2 T flattens to ∼ 1/(c1 + c2 ln r) .

• The transition point (kBT ≈ msL) for water-ice is called the “snow line.”

Example plot, for typical solids in our solar system, shown on next page:
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Solar-system comets undergo outgassing (formation of an extended coma &
tail) only once they reach the inner solar system (r ∼< a few AU) and their

surface H2O and CO2 starts sublimating.

Exoplanets that orbit very close to their host stars may be continually

undergoing regolith ablation from their surfaces, akin to how meteors are
disintegrated once they enter the atmosphere.
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Energy & Momentum Exchange Between Light & Matter

Earlier, we discussed the “radiation pressure” moment of the specific intensity.
Another way to derive it (if f(p) is known) is to take the second moment:

P =
1

3
n〈pv〉 (which gives the right answer for Pgas, too).

Working it out for the Bose-Einstein (Planck) function,

Prad =
1

3
Urad =

1

3
aT 4

and, when this is important, there’s an extra bulk acceleration term in the

momentum conservation equation: arad = −∇Prad/ρ.

In many cases, the above formulation isn’t the most useful version of arad.

A more robust version of the radiative acceleration (due to photons hitting
particles and transfering some of their momentum) is:

arad =
1

c

∫

dν κνFν

and, for optically thick stellar interiors (close to STE), one can show how this

is consistent with −∇Prad/ρ by using the radiative diffusion version of
(dT/dr)rad discussed earlier.

This version of arad makes sense because you can only have a momentum
exchange between light and matter when there’s a nonzero flux, and when

there’s a nonzero opacity.

For gas/plasma above the surface of a star, the radiative acceleration can

partially cancel out gravity:

atot = −GM∗
r2

+
κL∗
4πcr2

❀ ❀ |atot| =
GM∗
r2

(1− Γ)

where Γ = κL∗/(4πcGM∗) is the “Eddington factor.”

Γ must be < 1 for the outer layers of a star to remain hydrostatic & bound
together. If Γ > 1, an object has exceeded the “Eddington limit.”
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Consider radiation impacting macroscopic objects, like dust grains. Recall:

κνρ = σνn ❀ ❀ κν ∼ σν
mgrain

and for a big spherical grain, with radius a, we can define

σν ≈ πa2Q

where here Q is an absorption efficiency (fraction of light actually absorbed;
i.e., similar to 1−A for planets).

Thus, the radiative force on a grain is given by

Frad = mgrain arad =
L∗

4πr2c
πa2Q

but we also know that

Fgrav = mgrain g =

(

ρgrain
4πa3

3

)
GM∗
r2

so planetary scientists often discuss the ratio of these forces,

β ≡ Frad

Fgrav
= ❀ =

3L∗Q

16πGM∗c ρgrain a

This ratio is independent of r. It’s also ∝ 1/a, so radiation pressure is more

important for small grains, and not large planets!

If β > 1 anywhere, then the grain will be eventually ejected from the system.

The smallest grains will be ejected more rapidly.

Large grains with β < 1 are still bound into closed orbits. However, some of

them may spiral into the star because of the Poynting-Robertson effect.

P-R is a relatively weak effect involving absorption & re-emission from a
moving dust grain. Let’s look at a grain in the star’s inertial frame:

• An absorbed photon (ν0) is coming radially from the star.

• Re-emission is isotropic in the grain’s frame, but an observer in an inertial
frame sees different frequencies in different directions:
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For θ = 0 along the grain’s velocity vector,

ν = ν0

(

1 +
V

c
cos θ

)

More photon momentum (hν/c) is lost in the forward direction than in the

backward direction. A simple way to estimate the net loss is to just take a
“forward minus backward” momentum difference:

∆p ≈ p(θ = 0)− p(θ = π) =
2 V hν0
c2

.

Another way to think about it is to take a flux-weighted “first moment” of the

angular dependence of the photon momentum:
∫

dΩ n̂

[
hν0
c

(

1 +
V

c
cos θ

)]

= ❀ =
4π

3

V hν0
c2

.

However, neither of these coefficients are exactly right.

We need special relativity to compute it exactly. Larmor (1913) &
Robertson (1937) showed that the factor isn’t 2 or 4π/3, but just 1.

Thus, via Newton’s 3rd law, when photons run away with a net momentum

difference in one direction, the particle feels an equal and opposite force (i.e., a
slowdown!) with magnitude

FPR =
∆p

∆t
=

hν0
∆t

V

c2

and the trick is to realize that the “photon power” absorbed by the grain can

be written as
hν0
∆t

≈ L∗
4πr2

πa2 .
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This gives, for Q = 1,

FPR =
V

c
Frad =

V

c
βFgrav

and, for a dust grain in a circular orbit, V =
√

GM∗/r, so FPR ∝ r−2.5.

As one approaches the star, FPR gets stronger than both Fgrav and Frad.

For β ∼ 1, FPR is a factor of V/c weaker than Fgrav. Thus, the inspiral

timescale is roughly c/V times LONGER than the orbital period.

(Example: for a 1 year orbital period, the inspiral time is ∼104 years. This is

SHORT compared to the age of the solar system! Thus, to account for the dust
we see now, there must be continual sources making more dust all the time.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For an interesting connection with the gravitational dynamics part of RDP, see
Wyatt & Whipple (1950, ApJ, 111, 134), who derived equations for how the

P-R effect can influence a large object like an asteroid or moon. They derived
equations that show how its semimajor axis and eccentricity evolve under the

influence of radiation pressure, and they discovered some new constants of

integration.
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