
RADIATION PROCESSES

The final part of the course: photons & electromagnetic radiation.

Usually we’ll be considering systems with spatial scales ≫ the wavelengths of

radiation. Thus, the radiation travels along straight “rays” in vacuum.

A basic concept is the energy flux of radiation. Essentially the same quantity

as the Poynting flux S of E&M waves. Consider area element dA. How much
photon energy dE passes through dA in time interval dt?

Even though F sums over all rays that make it through dA (no matter where
they come from), we’ll see that it is “weighted” like the bulk/centroid gas
velocity u is a weighted version of microscopic particle velocity v.

Observationally, detectors have finite area, so actual fluxes must be computed
by dividing photon “count rates” by the total (effective) area of the detector.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When we plot a spectrum/SED, we’re showing how much flux is measured in

different “bins” of λ or ν. For example, the Sun’s flux:
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The integral under the curve gives the total (“bolometric”) flux measured at
Earth:

F = 1,361 W/m2 (“solar constant” at top of atmosphere)

Thus, the spectral quantities are measured “per unit:”

Fλ = {flux per unit wavelength}
[

W

m2 nm

]

Fν = {flux per unit frequency}
[

W

m2 Hz

]

and... F =

ˆ ∞

0

dλ Fλ =

ˆ ∞

0

dν Fν .

These “per unit” fluxes are like continuous probability distributions; i.e., we
can think of them like

Fλ = lim
dλ→0

[

flux between λ and λ+ dλ

dλ

]

, etc.

Converting between Fλ and Fν can be tricky. The limiting form given above

means that we can think of them kind of as
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so if we know one, the other comes from the chain rule.

Let’s say we know Fλ. Then,
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We know that c = λν, so

λ =
c

ν
= cν−1 so

∂λ

∂ν
= −cν−2

and

Fν =
( c

ν2

)

Fλ or, equivalently,

(

λ2

c

)

Fλ .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Sometimes, we don’t have a spectrometer to measure the high-resolution SED
(either Fλ or Fν). Often, astronomers rely on photometry to measure the
integrated flux F (sometimes called f) in finite ‘passbands’ of the spectrum.

These fluxes are often called apparent brightness (same units: W/m2 or
erg/s/cm2), and astronomers tend to convert them to dimensionless units

called MAGNITUDES...

The human eye seems to be a logarithmic detector; i.e., it perceives equal flux

ratios as ∼equal intervals.

Ancient Greeks devised a system where the brightest stars had magnitude 1,
next brightest 2, and on down to 6 (the limit of naked-eye perception).

In the 1800s, Pogson formalized that system by noting that a 1st magnitude
star is 100 times brighter than 6th magnitude.

So, if 5 magnitude steps correspond to a ratio of 100, then one magnitude step
is a ratio of (100)1/5 ≈ 2.512. In other words, to “step up” from 6th to 1st

magnitude, you’d have to you’d have to multiply the flux by 5 successive
factors of 2.512, to get the required factor of 100. Thus,

(m1 −m2) = −5 corresponds to f1/f2 = 100

(m1 −m2) = −2.5 corresponds to f1/f2 = 10

(m1 −m2) = −1 corresponds to f1/f2 = 102/5 = 2.511886 .

To be quantitative, we need absolute standards,

m−mstd = −2.5 log10

(

f

fstd

)

There are 2 similar systems for benchmarking a known fstd with mstd = 0 :

• Vega’s spectrum (archetypical 0th magnitude star)

• An ABsolutely defined spectral function that everyone agrees on

(the “AB system”) developed by John Oke in the 1970s:
fν = constant, fλ ∝ 1/λ2.
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Apparent magnitudes measured with multiple filters provide “color” info:

Notation: mV (similar to eye response) often called “V magnitude” or just V .

“Colors” = ratios of fluxes in different filters = differences in magnitude

(e.g., B − V , J −K).

Sometimes we want to know how much of the total/bolometric flux we’re

missing by just using one filter. For specific types of stars, there are tables of

bolometric corrections:

i.e., for the V band, mbol = mV + BCV

and because mbol < mV , BCV must always be ≤ 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The measured flux of a distant source is useful, but there are other associated

quantities that sometimes are more useful.

One down-side to using flux is that it’s not an “intrinsic” property of a source.

The further away you go from a compact/point source, the flux drops as 1/r2.

Thus, if we integrate the flux over a closed surface that encompasses the
source, we should “catch” all of the electromagnetic energy, and get the same

answer no matter the distance r. Define the luminosity as the total power
emitted (in erg/s, or Watts):

L =

‹

dA F =

˛

dΩ r2 F =

ˆ 2π

0

dφ

ˆ π

0

dθ sin θ r2 F = (4πr2)F .
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Also, absolute magnitudes (capital M ’s) are a way of talking about the

intrinsic luminosity of an object, independent of its distance, while still using
the magnitude system.

Absolute = apparent for a benchmark distance of 10 parsecs:

M = m− 5 log10

(

d

10 pc

)

The bolometric (full-spectrum) absolute magnitude is equivalent to the total
luminosity:

Mbol −Mbol,⊙ = −2.5 log10

(

L∗
L⊙

)

IAU defined Mbol,⊙ ≡ 4.74 .

Because stars have luminosities between about 10−6 & 10+6L⊙, they have
Mbol between about –15 and +15.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The concepts & units are proliferating... let’s summarize:

Astronomy term symbol units SI radiometry term

bolometric luminosity L W power or radiant flux

bolometric flux F or f W/m2 irradiance or flux density
flux Fλ or fλ W/m2/nm spectral irradiance

flux Fν or fν W/m2/Hz spectral irradiance

total intensity I W/m2/sr radiance

specific intensity Iλ W/m2/sr/nm spectral radiance
specific intensity Iν W/m2/sr/Hz spectral radiance
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The last one we haven’t talked about yet: INTENSITY.

Recall that the flux F sums over all rays that make it through dA, no matter
where they come from. Often, we want to know more: what is the full 3D

distribution of ray paths, and how energy is distributed as a function of solid
angle?

Thus, we define the specific intensity (Iν or Iλ) to describe all information
contained in the flux, plus how the photon rays are arranged in direction.

Iν describes how much photon energy is flowing
→ through a particular area,
→ in a particular direction (i.e., into a particular solid angle),

→ per unit frequency (i.e., energy “bin”),
→ per unit time.

Iν(n̂) = lim
dE

(dA cos θ) dΩ dν dt

(in the limit of dA → 0, dΩ → 0, dν → 0, dt → 0)

Standard units of Iν: erg/s/cm2/sterad/Hz

Alternate units:

• change ergs (or Joules) to photons; i.e., divide by E = hν.

• instead of “per unit frequency bin,” use bins in λ instead (convert using

chain rule, like Fν ↔ Fλ).

Soon, we will discuss how Iν(n̂) describes the same things as the photon
distribution function f(p). For now, I’ll just give the conversion between the
two:

Iν =
h4ν3

c2
f and of course |p| = hν

c
, n̂ =

p

|p|
then later we will motivate it in more detail, since Iν is so central to
astrophysics.

We’ll also see how Boltzmann equation for f (with sources & sinks on the
right-hand side) becomes the equation of radiation transfer for Iν.
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In vacuum,

• we’re not considering light rays that bend (no GR!)
• Iν is constant along a given ray (unlike flux; for proof see below)

• dΩ can mean either “into” or “out of” the projected area:

r ≫
√
dA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sometimes it’s difficult to mentally reconcile Iν ∝ f(p), since:

Iν counts the photons passing through a surface, but
f counts the particles per unit volume of 6D phase space.
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Let’s explore the connection by looking at the 6D volume element:

d3r d3p = [(dA cos θ)(c dt)] ×
[

p2 dp dΩ
]

[

h3ν2 dν

c3
dΩ

]

(since p = hν/c)

where earlier we often assumed an isotropic distribution and thus assumed dΩ

integrates to 4π.

So, does our conversion between f and I make sense?

If f =
#

d3r d3p
and Iν =

h4ν3

c2
f ,

then Iν =
h4ν3

c2
#

dA cos θ c dt

c3

h3 ν2 dν dΩ

The factors of c cancel out completely, and what’s left is

Iν =
(# hν)

dA cos θ dt dν dΩ
where the numerator is essentially dE.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To make use of the radiation field in real astrophysical environments,

sometimes Iν(n̂) contains too much information.

We can integrate over the full frequency/energy spectrum to obtain the total

intensity I, which measures the directional flow of all photon energy,

I =

ˆ ∞

0

dν Iν =

ˆ ∞

0

dλ Iλ where I ∼ E

(dA cos θ) dΩ dt
.

We can also take solid-angle moments over dΩ, analogous to the d3p moments

of gas/plasma distribution functions.
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Earlier, we defined the energy density that’s present at any one time in a
unit volume as U ∼ E/V ∼ dE/dV .

From the cartoon above, we know that photons flowing through a given area in

dt time take up a “volume” dV = dA cos θ c dt.

Putting it all together, the above scalings give I/c ∼ U/dΩ. But if we realize

that all angles “count” when summing up the total energy density present at a
given location, we realize it’s better to write

U =

ˆ

dΩ
I

c

If I(n̂) is exactly isotropic, then no net energy can flow from one point in

space to another (i.e., zero flux).

This would be an equilibrium distribution, akin to our old friend the

Maxwell-Boltzmann f . Of course, photons are quantum bosons, so they obey
Bose-Einstein statistics. We’ll come back to this in a bit.

However, the above integral over dΩ leads us to consider weighted moments
over the solid-angle distribution of rays.

The energy density U is proportional to the 0th moment.

Let’s define the net flux of energy as proportional to the 1st moment:

For a specific vector direction n̂, F ≡
ˆ

dΩ I n̂

This is a generic way to write it. Let’s be more specific...

For a spherical coordinate system, n̂
can vary over all θ and φ, but let’s say

we want the net flux in the z direction.

dΩ = sin θ dθ dφ

n̂x = sin θ cosφ , n̂y = sin θ sinφ , n̂z = cos θ.
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Fz = F · êz
=

ˆ

dΩ I(n̂) n̂ · êz and n̂ · êz = cos θ

Thus,

Fz =

ˆ 2π

0

dφ

ˆ π

0

dθ sin θ I(θ, φ) cos θ .

A completely isotropic I(θ, φ) would give Fz = 0 because it’s an odd function:

For µ = cos θ, the θ integral is

ˆ +1

−1

dµ µ I(µ) (note: dµ = − sin θ dθ) .

Note: this µ is different from the µ used for the mean atomic mass of a

mixture of elements. Usage should be clear from context.

Thus, to get a non-trivial result for the net flux, let’s assume a nearly

isotropic intensity...

I ≈ I0 + I1 cos θ where |I1| ≪ |I0|

In the integral to get the energy density, the I1 term cancels out:

U = 2π

ˆ +1

−1

dµ
I

c
=

4πI0
c

.

In the integral to get the net flux, the I0 term cancels out:

Fz = 2π

ˆ +1

−1

dµ µ (I0 + I1µ) =
4πI1
3

.

It’s now possible to define the angle moments in the standard way that stellar
atmosphere researchers developed a century ago...

Jν =
1

4π

ˆ

dΩ Iν(µ) =
1

2

ˆ +1

−1

dµ Iν(µ)

Hν =
1

4π

ˆ

dΩ µ Iν(µ) =
1

2

ˆ +1

−1

dµ µ Iν(µ)

Kν =
1

4π

ˆ

dΩ µ2 Iν(µ) =
1

2

ˆ +1

−1

dµ µ2 Iν(µ)
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Jν is the mean intensity, i.e., just the mean value of Iν averaged over all
directions. Its connection to the energy density U was described above.

The 1st moment Hν is Eddington’s flux (sometimes the “Harvard flux”), and

it’s clear from the above that

Fν = 4πHν where Fν is often called the “physical flux.”

The 2nd moment tells us about the overall anisotropy of the radiation field,

with respect to the θ = 0 (µ = 1) axis. Note that µ2 is highly peaked in both
directions along the axis, so Kν oversamples radiation in those directions, at

the expense of radiation in the transverse directions.

Also, Kν is related to the “radiation pressure” of a photon gas. Recall that the
momentum associated with a single photon with E = hν is

p = hν/c

and, with analogy to the gas/plasma pressure tensor (P ∝ 〈vv〉), we could
define a 3×3 radiation pressure tensor,

P =

ˆ

dΩ n̂n̂
Iν(n̂)

c

(i.e., proportional to the 2nd angle moment of f). The Cartesian component
(P)ij gives the net rate of transport of the ith component of momentum flux

(per dt, in frequency bin dν) through a surface (dA) with normal direction j.

In our standard coordinate system (where the z axis is θ = 0), the vertical

transport of the vertical component of radiation momentum corresponds to

(P)zz =
1

c

ˆ

dΩ cos2 θ Iν(n̂) =
4π

c
Kν .

For our toy model of a nearly isotropic radiation field (I = I0 + µI1), we had

J = I0 , H =
I1
3

≪ I0

and the frequency-integrated second moment is

K =
1

2

ˆ +1

−1

dµ µ2 (I0 + I1µ) =
I0
3

.
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Later, we’ll see that this result can be generalized into a useful diffusion
approximation (also known as Eddington’s first approximation) that tells us
about the isotropy of the radiation field; i.e.,

J ≈ 3K tends to be valid

when it’s a dense, “optically thick” region close to isotropic equilibrium.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What is the EQUILIBRIUM photon distribution f(p)?

Let’s think more about particles at the quantum level. In Maxwell-Boltzmann

statistics, there’s no limit on the number of particles that can “fit” inside a 6D
phase-space box d3r d3p, and that box can be as small as we want.

In quantum mechanics, there are two limitations:

(1) Heisenberg’s uncertainty principle: The boxes can only be so small.
In other words, the number of quantum “states” (i.e., particular wavefunction

solutions of the Schrödinger eqn) that can exist is limited. We can’t resolve
any differences smaller than, say,

∆x∆px ≥ h ,

so the phase-space volume of one indivisible quantum “cell” is roughly h3. For
a larger phase-space volume (d3r d3p), the number of unique quantum states

that can exist is given by dividing it up into h3 sized cells:

Nuqs =

[
ˆ

d3r

ˆ

d3p
1

h3

]

× gs

where gs is the quantum multiplicity (or degeneracy) of a given type of particle
that goes into the cells. gs = the number of possible states that a single

particle can have. Often gs = 2s+ 1, where s is the quantum spin.

Free electrons, protons, neutrons: s = 1/2, gs = 2.

Photons have only 2 unique polarization states, so gs = 2.

When gs > 1, quantum mechanics allows > 1 “flavors” of state to coexist.

Note that Nuqs isn’t a number of particles, it’s the number of uniquely

distinguishable quantum states in some large-scale region.
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(2) Pauli’s exclusion principle: For some types of particle, there can be
only one particle occupying any given unique quantum state.
(Or, strictly speaking, only gs particles per “h

3 box” in 6D phase space.)

Bose-Einstein statistics: particles that obey only Heisenberg, but can have
an unlimited number stuffed into each quantum state (“bosons”): e.g., photons.

Fermi-Dirac statistics: particles that obey both Heisenberg and Pauli
(“fermions”): e.g., matter.

On a quantum level, bosons kind of obey an “anti-Pauli” principle: the
presence of a boson in a particular quantum state enhances the probability
that other identical bosons will be found in that same state. Identical bosons

attract one another; identical fermions repel!

Anyway:

Min. volume of a 6D box Max. # of particles in a box

M–B 0 ∞
B–E h3 ∞
F–D h3 gs

There are several ways of deriving the general equilibrium distribution function:

f(p) =
C

exp[(E − µ)/kBT ] + φ
φ =







0 M-B
+1 F-D
−1 B-E







where E is kinetic energy (depends on p2) and µ is the chemical potential,
which we’ll discuss more below.

Collins § 1.1 gives a nice derivation of the three distributions (i.e., similar to
our earlier look at random-walk diffusion, using the binomial theorem to count

unique permutations of particles in quantum states).

There are other interesting derivations; see stat-mech textbooks. Later we’ll
explore one that Einstein used (“detailed balance” of quantum transitions),

but we won’t spend any more time deriving the above from first principles.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Because f is the density of particles in phase space, for fermions we know that

max(f) =
gs
h3

= C

which follows from the fact that the denominator of f (for φ = +1) cannot be

smaller than 1. In this case, it’s the chemical potential µ that sets the
normalization in physical space (i.e., the zeroth moment n).

For bosons, the convention is to also use the above value of C, too. For
photons, we set chemical potential µ = 0 because there is no definite limit on

their number density n in physical space.

In strict photon thermal equilibrium, the Bose-Einstein distribution
corresponds to the local Planck function,

fBE =
2

h3(ehν/kT − 1)
, so Iν =

h4ν3

c2
f =

2hν3/c2

ehν/kT − 1
= Bν(T )

Also,

B =

ˆ ∞

0

dν Bν(T ) =
σT 4

π
where σ = the Stefan-Boltzmann constant.
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Let’s also work out some standard momentum-space moments of f . These are
related to the moments of Iν, as defined above.

Remember that E = hν, and p = hν/c, so

d3p = 4πp2 dp =
4πh3ν2 dν

c3
.

Thus,

n =

ˆ

d3p f =
4πh3

c3

ˆ ∞

0

dν ν2
2/h3

ehν/kT − 1

i.e., n =
8π

c3

ˆ ∞

0

dν ν2

ehν/kT − 1
= bT 3

where the definite integral can be looked up, and b is expressed in terms of a
Riemann ζ function. Plugging in the numbers, b ≈ 20.3 cm−3 K−3.

More relevant is the photon energy density,

U =

ˆ

d3p hν f(p) = n〈hν〉 =
8πh

c3

ˆ ∞

0

dν ν3

ehν/kT − 1
=

(

8π5k4B
15h3c3

)

T 4 = aT 4

where a is the “radiation constant” a = 4σ/c.

Surprisingly, there’s a decent summary of different ways of computing the

“peak” energy of a Planck function on Wikipedia...
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The Equation of Radiative Transfer (RT)

Although a complete description of the flow of radiation through matter (e.g.,
a stellar interior or stellar atmosphere) depends on multiple pieces of physics,

there is one primary conservation equation: Boltzmann’s equation!

Before writing it, though, let’s simplify our description of the system.

The full form Iν(n̂, r, t) depends on 7 scalar quantities. (n̂ is a unit vector;
only 2 angles.) It pays to simplify the problem...

• Ignore time-dependence (i.e., all ∂/∂t = 0).

• Assume spherical symmetry (i.e., spatial properties depend on r only).

• This also reduces the n̂ vector down to just one angle. Also, if there’s no
preference for the x or y transverse dimensions, the only important angle
is θ, and we assume everything’s symmetric in φ.

• We often also assume plane-parallel geometry...

If the total extent of the atmosphere (zmax − zmin) is ≪ R∗, then we can forget

about spherical stellar curvature and use r ≈ z.

Many equations will look nicer if we use µ = cos θ

Thus, we want to solve for Iν(µ, z). [reduced 7 scalars to 3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Thus, the Boltzmann equation for the photon f(p) is given by

✓
✓
✓✓∂f

∂t
+ v · ∇f +✘✘✘✘✘F · ∇pf = {sources, sinks}

where we note that the system is time-steady and non-relativistic (i.e., there
are no external forces strong enough to bend light-rays or change a photon’s p).
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However, we’re keeping the RHS general: there are local processes that can
create and/or destroy photons (or change their p, like collisions).

Remembering that Iν ∝ f and that v = cn̂, the equation simplifies to

n̂ · ∇Iν = Snet

and the RHS has been boiled down to a single “net” rate of creation and/or

destruction. What gives rise to Snet 6= 0?

• Photons can be absorbed by atoms & ions. Rate S depends on local

properties of the gas (e.g., ρ, T ) and on “incoming” Iν.

• Photons can be emitted “spontaneously” by atoms & ions. Rate S just
depends on local properties.

• Photons can also be lost by being scattered out of a given direction n̂ or
up/down in frequency ν. Rates depend on both local properties and on
incoming Iν.

• There can also be scattering into the beam which is essentially a net
“creation” of photons in the given direction n̂ and frequency ν. The

photons came from some other bins in direction & frequency, but those are
kept track of elsewhere. Rates depend on local properties and on the Iν in
all those “other” directions, but not on the Iν(n̂) that we’re following.

The left-hand side above can be simplified in plane-parallel geometry.

n̂ = (cos θ)êz + (sin θ)êx

Spatially, Iν is a function of z only, so ∇Iν =

(

∂Iν
∂z

)

êz .

Thus, the equation of radiative transfer is

cos θ
∂Iν
∂z

= Snet

which we can rewrite by breaking out the creation/destruction terms on the
right side:

µ
∂Iν
∂z

= jν − χνIν

where jν is the emission coefficient, and χν is the opacity. We’ve baked in the
assumption that loss rates are always proportional to the “incoming” Iν.

11.17



The opacity χν has units of 1/length. Most sources of opacity depend on at
least one power of the local density ρ, so we often define

χν = κνρ = [κν(abs) + κν(scat)] ρ

where the κ’s are typically just called absorption coefficients (even if they

arise from a combination of true absorption & scattering).

Units of κ: (cm2/g); i.e., a cross section per unit mass of “stuff” that’s doing

the absorbing.

We’ll occasionally refer to ℓmfp ≡ 1/χν as the mean free path of a photon

(irrespective of the type of process that halts the path every so often).

The gain term jν is often written as a product of χν times an intensity-like

quantity called the source function (i.e., Sν = jν/χν),

µ
∂Iν
∂z

= χν (Sν − Iν)

but keep in mind that although Iν is a function of both µ and z, Sν depends

only on z (and not angle). What is Sν? We’ll get to that soon.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Summary: Sources of Opacity

You probably know that the complete frequency-dependent κν has
contributions from multiple physical processes. For example:

• Electron (Thomson) scattering: unbound charged particles can

scatter E&M wave trains. Cross section for free electrons:

σe =
8

3
πr2e re =

e2

mec2
(classical electron radius)

and if the photons are non-relativistic (hν ≪ mc2), the electrons provide a
constant “gray” Thomson-scattering opacity

χe = 1/ℓmfp = σene = κeρ ❀ ❀ κe ≈ 0.2(1 +X) cm2 g−1 .

Ions can scatter too, but because σ ∝ 1/m2, their effect is many orders of
magnitude weaker.
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• Rayleigh scattering: Neutral atoms can scatter photons, too. If the
photon isn’t energetic enough to boost bound electrons to excited states,
it may still be (temporarily) absorbed, and cause the bound electron to

oscillate a bit around its unperturbed energy level. Then it re-radiates,
and the atom’s effective cross section is

σR ≈ σe

[1− (λ/λeff)2]2
(For H0, λeff = 1026 Å.)

Reduces to Thomson scattering for λ ≪ λeff .

• Free-free (bremsstrahlung) absorption & emission: when an
unbound electron undergoes a “hyperbolic” Coulomb collision with a

positive ion Zi, it can gain or lose kinetic energy. Gains [losses] occur if an
incoming photon is absorbed [emitted].

χν,ff = 3.7× 108
Z2
i nine

T 1/2 ν3

(

1− e−hν/kT
)

ḡff cm−1

and the free-free Gaunt factor ḡff is related to the Coulomb logarithm.
In astronomy, we often use

ḡff ∼
{

1 , hν ∼> kBT

ln
(

kBT
hν

)

, hν ≪ kBT

In the Rayleigh-Jeans tail (hν ≪ kBT , good for radio),

χν,ff ≈ 0.018
Z2
i nine

T 3/2 ν2
ḡff cm−1

and, in ionized plasmas, the Rosseland mean opacity is “Kramers:”

κff ≈ 3.7× 1022(1− Z)(1 +X)ρ T−7/2 cm2 g−1.

• Bound electrons in an atom are good opacity sources. Energy from

incoming photons may excite them to higher energy levels (bound-bound
abs. or scatt.) or eject them via ionization (bound-free abs.).
We’ll examine each of these opacity sources in more detail later.

• An interesting hybrid of b-f & f-f is the H− (hydride) ion. If an H0 atom
absorbs a photon in the presence of another free e−, it can form a
short-lived (unstable) H− ion, which rapidly separates into H0 + e−.
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Example of a sum over all sources (for one choice of ρ & T ):

For many applications, all we need is the MEAN opacity, averaged over the

whole ν spectrum. But how to do the weighting?

Planck mean? 〈κ〉 =

´

dν κν Iν
´

dν Iν

(

weights most highly absorbed

parts of the spectrum

)

That’s sometimes useful, but for dense regions like stellar interiors, we want to

know about the radiation that gets out (i.e., the bulk of the radiation that
carries the energy out), so we want to weight it by “transparency...”

Rosseland mean:
1

〈κ〉 =

´

dν 1
κν

∂Iν
∂r

´

dν ∂Iν
∂r

(we’ll derive this later)

Handout: Numerically computed Rosseland mean absorption coefficient

versus T and ρ.

In stellar interiors (T ≈ 105–107 K), κ ∝ ρT−3.5 (Kramers’ opacity).

In stellar atmospheres (T ≈ 104 K), it’s more complicated, but often κ ∝ T n,
where n > 0. Bound-free & H− opacity.

In extremely hot plasmas (T > 107 K) with ∼no more atoms, opacity is

dominated by electron scattering (κ ≈ constant).
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Rosseland mean opacity κ, in units of cm2 g−1, shown versus temperature (x-axis) and density (multi-color curves, plotted once per

decade), computed with X = 0.7 and Z = 0.02. Curves that extend from log T = 3.5 to 8 are from the Opacity Project (opacities.osc.edu).

Overlapping curves from log T = 2.7 to 4.5 are from Ferguson et al. (2005, ApJ, 623, 585). The lowest-temperature region (black dotted

curve) shows an estimate of ice-grain and metal-grain opacity from Stamatellos et al. (2007, A&A, 475, 37).
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There’s another thing we can do to simplify the math of the radiative transfer
equation: define a new “depth” coordinate:

Optical depth τν goes up as you go “deeper” into the atmosphere;

dτν = −χν dz

Note that it’s frequency dependent. Some photons escape more easily than
others.

• τ ≪ 1: “optically thin” regions where photons mainly flow freely;

absorptions/scatterings are rare.

• τ ≫ 1: “optically thick” regions where photons are trapped.
Absorptions/scatterings are so frequent that the distribution Iν(n̂) is

rapidly randomized to be nearly isotropic.

• τ ∼ 1: this defines the photosphere; i.e., the layer where most of the
photons that we see are created!

Since τ goes to zero as z → +∞ (high up), we can integrate to get the

absolute optical depth “scale” as

τν =

ˆ τν

0

dτ ′ν = −
ˆ z

+∞
dz′ χν(z

′) =

ˆ +∞

z

dz′ κν(z
′) ρ(z′)

and, lastly, the equation of radiative transfer simplifies to

µ
dIν
dτν

= Iν − Sν

where partial deriv’s were replaced by ‘d’ because we’re following how the
beams are processed vs. depth only (i.e., depth is the only coordinate that we’ll

differentiate with respect to) We’ll just treat µ as a fixed parameter.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Note that the RT equation is a 1st order ODE, which can be solved
straightforwardly with the integrating factor method.

For completely arbitrary Sν(τ), there is a general “formal solution” that

we’ll examine later.

A very useful conceptual model is to assume Sν is
constant in a “slab” of gas/plasma, surrounded by

vacuum. Here, it makes sense to define dτν = +χνds
(where ds = dz for µ = 1).

For this sign definition, the RT equation is: µ
dIν
dτν

= Sν − Iν .

If we specify an incoming boundary condition Iν = I∗ν at the left side of the
slab (i.e., at τν = 0) at normal incidence (µ = 1), then the integrating-factor

method gives the solution for the emergent intensity on the right:

Iν = I∗ν e
−τν + Sν (1− e−τν)

In the shallow layers (τν ≪ 1) we see Iν ≈ I∗ν , which makes sense because

nothing much has happened to the incident beam yet.

The deeper you go (τν ≫ 1), the more Iν → Sν . The slab eventually “forgets”
about the incident beam.

We’ll find this model illustrative for the so-called Schuster reversing-layer

picture of spectral line formation.

11.23



In order to know how to evaluate Sν , and thus how to compute Iν(µ), we need
to know more about the thermodynamic state of the atmosphere. There are 3
traditional limiting cases:

STE: strict thermodynamic equilibrium:

• Particles obey Fermi-Dirac statistics, photons obey Bose-Einstein.
All with a common T . All ℓmfp’s are short.

• i.e., all you need to specify the f(p)’s are: {nparticles, nphotons, T}.

• It’s an idealized, isotropic hohlraum (blackbody cavity), with Iν = Bν .

• Because there are no spatial gradients in an isotropic homogeneous
medium like this, the dIν/dτ term in the RT equation is equal to zero.

Thus, the RHS is zero, and Iν = Sν . Also, net flux is zero.

• Thus, Iν = Sν = Bν in thermal equilibrium.

LTE: local thermodynamic equilibrium:

• For particles, conditions are STE within a collisional ℓmfp (mean free path)
of a given point.... i.e., everything depends on n & T only.

• In atmospheres, photons “see further:” photon ℓmfp ≫ particle ℓmfp.
Thus, we don’t assume photons obey equilibrium fB−E(p).

• Iν 6= Bν, and Iν is no longer isotropic.

• A nonzero net flux can thus flow through an atmosphere.

• If the distribution of atomic excited states (e− energy level populations) is

also STE, then emissions balance absorptions in such a way that locally
emitted photons are sampled from a Planck function. Thus, Sν = Bν .

NLTE: non–{local thermodynamic equilibrium:}

• The most generally valid regime. All bets are off!

• Usually, NLTE matters in very low-ρ optically-thin regions.

• Atomic excited states evolve slowly, and can get “stuck” into weird,
non-equilibrium states.
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To sum up, we can ask the question: “Is knowing the local ρ and T sufficient
for knowing the excitation & ionization (& emission) state of the gas?”

• In STE: Yes.

• In LTE: Yes.

• In NLTE: No! This means that measured properties of a given “pixel”

aren’t guaranteed to be representative of the true plasma conditions at
that location.

The remainder of lecture set 11 is devoted to:

• Application 1: Diagnosing radio sources from thermal bremsstrahlung
spectra (1 page only).

• Application 2: Classical LTE stellar atmospheres (the rest).
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Application 1: Thermal/Radio Diagnostics of Unknown Sources

Consider a distant cloud/star/galaxy. Many objects like this emit low-freq.
radiation as if they are unilluminated, hot/ionized “slabs” in LTE:

Sν ≈ Bν and our slab model gives: Iν = Bν(1−e−τν) ≈
{

τνBν , τν ≪ 1
Bν , τν ≫ 1

In the Rayleigh-Jeans tail (hν ≪ kBT ), Bν ≈ 2kBT ν2/c2

and also, if the cloud is homogeneous with depth ℓ, then τν = χνℓ.

For this slab, thermal free-free emission gives

τν = χνℓ ∝ n2
e ℓ

T 3/2 ν2
(assuming fully ionized & ignoring ḡff)

• The low-ν part of the spectrum corresponds to the most optically thick
region. There, Iν ∝ Tν2, so the spectrum allows T to be measured.

• At higher ν, it becomes optically thin. There, the ν2 factors cancel out,

and Iν ∝ constant (or ∼ ν−0.1, if ḡff is computed in gory detail).

In this part of the spectrum, Iν depends on both T and the so-called
emission measure,

EM =

ˆ

dz n2
e ∼ n2

e ℓ

which is a diagnostic of “how much material is there” (along a presumably
unresolved slab). Warning: some papers define EM ∼ n2

e × volume.

• At even higher ν, either one starts
to see the “Wien tail” of the
Planck curve (Iν ∝ e−hν/kT ), or if

there are high-energy/relativistic
particles, one may see signs of

synchrotron radiation.
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Application 2: Stellar Atmospheres

The rest of this document will be a derivation of some basic “laws” about the
thin layer at a stellar surface (photosphere) that generates visible photons.

In this case, let us make one additional approximation: that the opacity κν is
“gray” (i.e., independent of frequency or wavelength).

We can then use un-subscripted intensity quantities (I, S, B) and identify
those with bolometric values. Since one λ absorbs & scatters like any other,

why not just integrate over the whole spectrum?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Earlier I said that solving for I(µ, z) requires more than just the RT equation.

Another key constraint is Energy Conservation. Even though we’ve talked a
lot about photons being created & destroyed, we can often assume that (in

steady-state) the total energy emitted = total energy absorbed:
ˆ

dν

ˆ

dΩ Snet =

ˆ

dν

ˆ

dΩ (jν − χνIν) = 0 .

Exceptions:

• Fusion in stellar cores: there is truly “net creation” of photon energy

from the nuclear reactions.

• Convection in stellar envelopes: if radiation can’t transport the energy

created by fusion, something else has to take over.

Outside of those regions, photon energy remains in that form. Even if photons
at one ν are absorbed, it may heat up the plasma, which increases Bν(T ), and

the total energy is conserved. Another way of writing energy conservation is

∂U

∂t
+ ∇ · F = 0 or just ∇ · F = 0 when time-steady.

Think about analogies to the ∇ ·B = 0 Maxwell’s equation!

How is this derived? Integrate the RT equation over both dν & dΩ:
ˆ

dν

ˆ

dΩ

(

µ
dIν
dz

)

=

ˆ

dν

ˆ

dΩ (jν − χνIν)

i.e., dF/dz = 0 .
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This means that in our tiny plane-parallel “box,” we can be confident in
assuming F = constant ≡ σT 4

eff.

A natural consequence of plane-parallel symmetry is also that the vector F is

pointing in the “vertical” direction.

You may scratch your head and wonder about absorption. Doesn’t that eat

away at the flux? No! Even if photons at one ν are absorbed, it may heat up
the plasma (especially in LTE or STE), which increases Bν(T ), and more

photons are emitted at other parts of the spectrum. As long as photons are
just carrying the energy (ǫ = 0), their total energy stays conserved.

Thus, for our gray (freq.-integrated) case, we know two things:

µ
dI

dτ
= I − S &

dH

dτ
= 0 (recall F ∝ H and τ ∝ z)

We’ll use the term radiative equilibrium for situations that satisfy both of
the above equations.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First, though, we should pause to think more about the source function S.

There are 2 interesting limiting cases:

(1) In STE or LTE, emissions are balanced by absorptions in a way that

depends only on the thermalized conditions of the particles. Thus, in most
stellar atmospheres, it’s safe to assume S ≈ B when the opacity is dominated
by absorption/emission.

Note: the “gray” version: B =

ˆ ∞

0

dν Bν(T ) =
σT 4

π
.

(2) In an NLTE region, what if the only source of opacity was scattering?

Here, the source function S tells us how photons get scattered into the
direction n̂ that we’re following with the radiative transfer equation.

There are many physical mechanisms of scattering, and a lot of them are

isotropic; i.e., the photon scatters into an essentially random angle, losing all
“memory” of its incoming direction.
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When scattering is isotropic, it doesn’t really matter where it came from, so S
should depend on the angle-average of I over all directions. In other words, for
pure scattering, S ≈ J .

In general, if the fraction of total κν that comes from scattering is called a
(sometimes called “albedo”), then

S = (1− a)B + aJ .

Sometimes you’ll see ǫ = 1− a (the fraction of total κν that comes from true
absorption/emission) defined as the “collisional destruction probability.”

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The equation of radiative transfer is thus given by

µ
dI

dτ
= I − S = I − (1− a)B − aJ

and we can take the 0th moment (again) by just multiplying each term by

1/2 and integrating over dµ:

d

dτ

(

1

2

ˆ +1

−1

dµµ I

)

=

(

1

2

ˆ +1

−1

dµ I

)

−(1−a)

(

1

2

ˆ +1

−1

dµB

)

−a

(

1

2

ˆ +1

−1

dµ J

)

In the 2 right-most terms, the factors of B and J are not functions of µ. They
can be pulled out, and the integral is 2, which cancels out with the 1/2. Thus,

dH

dτ
= J − (1− a)B − aJ

= (1− a)(J − B)

Remember energy conservation: H = constant, so left-hand side = 0.

Thus, for a plane-parallel atmosphere in radiative equilibrium, we know that

• No flux is created or destroyed (i.e., H = constant).

• J = B (i.e., the mean radiation field is the Planck function),

as long as a 6= 1.

• From definition of source function, this also means S = J = B .
Same outcome as assuming LTE.
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This doesn’t mean that I(µ) is the Planck function.

How does this help us? Well, if we take the first moment of the equation of
transfer, we multiply each term by µ/2 and integrate as before.

Note that we can revert to earlier version

µ
dI

dτ
= I − S

because we know all about S = B = J by now. Thus,

d

dτ

(

1

2

ˆ +1

−1

dµµ2 I

)

=

(

1

2

ˆ +1

−1

dµµ I

)

−
(

1

2

ˆ +1

−1

dµµS

)

dK

dτ
= H − {zero!}

(noting that, after we pull out S, the rest is an odd function)

Because H is a constant with depth, this is a straightforward differential
equation, which can be solved for

K(τ) = Hτ + K0

where K0 is an integration constant that tells us the value of K at τ = 0.

In the 1920s, Eddington thought about this problem, and he made 2 key

approximations that allow us to move forward to something useful.

The “Eddington approximations” aren’t perfect (often wrong by 10%–20%),

but they’re not terrible. They involve how the moments relate to one another:

• 1st approx (diffusion approx): J = 3K . In radiative stellar interiors, we
saw that this worked well for I ≈ I0 + I1 cos θ. It’s best for the deep,

optically thick layers.

• 2nd approx (surface approx): J0 = 2H0 . This is true at the optically
thin “top” of the atmosphere. If all radiation is going up and none is

coming down, then “half of the sky” is filled, and half is empty. Thus, the
flux is ∼half of the mean intensity.
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Thus, the 2nd approximation holds for I+ 6= 0, but I− = 0:

Let’s plug in those approximations, one at a time...

J = 3Hτ + 3K0 (using the 1st)

= 3Hτ + J0

= 3Hτ + 2H (using the 2nd)

B = 3H

(

τ +
2

3

)

(collecting terms & recalling S = B = J)

We’ve seen that B = σT 4/π and that

F = 4πH =
L∗

4πR2
∗
= σT 4

eff (which defines Teff)

Plugging those in, we get the classical gray atmosphere temperature

stratification law:

T (τ)4 =
3

4
T 4
eff

(

τ +
2

3

)

Compare to empirically adjusted solar models (Vernazza et al. 1981):
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Limiting values:

• As τ → 0, T → (1/2)1/4 Teff ≈ 0.841Teff.
... the real Sun can go down to ∼0.7 Teff

• When τ = 2/3, T = Teff, and this height is traditionally called the optical

“surface” or photosphere.

• For τ ≫ 1, T keeps growing. This is a close cousin to the greenhouse

effect, in which more atmospheric absorption causes the atmosphere to

heat up more and more. In fact, in the deep interior, this T (τ) gives the
same answer as what we can get from our nearly-isotropic toy model

(I = I0 + µI1). In that model the 1st moment of the RT equation is

dK

dr
=

1

3

dJ

dr
= −χH = −χF

4π

and we also have
J = I0 =

c

4π
U =

c

4π
(aT 4) .

Thus,

dU

dr
= 4aT 3dT

dr
= −3χF

c
=⇒

(

dT

dr

)

rad

= − 3κρ

4acT 3

(

Lr

4πr2

)

.

defining the condition of radiative diffusion in stellar interiors.

A higher luminosity makes a stronger temperature gradient, because more
flux = more anisotropy in I(µ), and thus more of a radial change in

U ∝ T 4.

Also, a large opacity makes a stronger temperature gradient, too... because

large opacity = “good insulation” that allows the core to retain its heat
while being surrounded by blackness of space.
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How does this depth dependence help us understand the radiation emerging
from the atmosphere? We’ll now work out how I(µ) produces the so-called
limb darkening effect.

To do that, I’ll note that we’ve gotten pretty far without truly solving the RT
equation for the “real” case of S varying with depth.

We’ve noted that if S is known, the RT equation is just an ordinary 1st order
differential equation that can be solved with the integrating-factor method.

For an atmosphere with no “illumination from above,” the so-called formal
solution to the RT equation in a semi-infinite atmosphere is:

I(µ, τ) =

{

´∞
τ

dt
µS(t)e

(τ−t)/µ µ > 0 (upward rays)
´ 0

τ
dt
µS(t)e

(τ−t)/µ µ < 0 (downward rays)

This also illustrates why S is called the source function. I is “built up” by a

weighted integral over S, over the regions that a photon will have traversed
over its lifetime.

Aside: An even more general solution, which accounts for illumination from
an outside source I∗ν and has a slightly different definition for the direction in

which τν increases along the ray, is:

Iν(τν) =

ˆ τν

0

Sν(tν)e
−(τν−tν)dtν + I∗νe

−τν ,

and the boundary condition Iν = I∗ν is applied at the “top” of an atmospheric
slab (τν = 0). We saw earlier that if you take the limiting case of

Sν = constant, then this simplifies to

Iν = I∗ν e
−τν + Sν (1− e−τν)

which should make sense, since the deeper you go (τν ≫ 1), the more Iν → Sν .
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For a 1D stellar atmosphere, we can work through the formal solution for:

• The gray/Eddington solution for S(τ), and

• The specific value τ = 0 (i.e., to solve for the “emergent intensity” coming
from the top of the atmosphere).

For S(t) = 3H[t+ (2/3)],

I(µ, 0) =
3H

µ

ˆ ∞

0

dt

(

t+
2

3

)

e−t/µ = ❀ ❀ =

{

3H
(

µ+ 2
3

)

µ > 0 ,

0 µ < 0 .

This convenient “conversion” from τ -dependence to µ-dependence is called the

Eddington-Barbier relation. (Not general for any S(τ).)

As we look across an image of the Sun, we see rays that go from

µ = 0 (limb) to µ = 1 (center) to µ = 0 again (other limb):

This relationship makes intuitive sense... the rays skimming the limb (µ ≈ 0)
penetrate less deep (in the r direction) than the rays hitting disk-center.

Photons that come from “shallower” (higher up) regions emerge from cooler

plasma... and Bν(T ) is lower for lower T .

Thus, limb darkening is a good (albeit indirect) way to probe the depth
dependence of gas properties in a stellar atmosphere.
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FYI, the full angle & depth dependence of the gray I(µ, τ) can be plotted
using polar coordinates...

We can use the derived I(µ, τ) to check the validity (i.e., self-consistentcy)
of the Eddington approximations.

The full gray/Eddington solution is

I(µ, τ) =

{

3H (τ + µ+ q) for µ > 0 ,

3H
[

(τ + µ+ q)− (µ+ q) eτ/µ
]

for µ < 0 .

where q = 2/3. We can use this to re-compute the J,H,K moments at the
surface (τ = 0):

J =
7

4
H H = H K =

17

24
H

Instead of J = 2H, we have J = 1.75H (∼15% error).

Instead of J = 3K, we have J = 2.471K (∼20% error).

Thus, the Eddington approximations are okay if we are willing to ignore

inconsistencies at the 15–20% level.

(J = 3K gets better and better as τ → ∞.)
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Another important question: How do we convert optical depth τ to actual
atmospheric height z?

Recall the definition of optical depth:

τν =

ˆ +∞

z

dz′ κν(z
′) ρ(z′)

One way we can get this into a form where we can solve for z is to approximate:

• In upper layers of atmosphere, T ∼ constant.

• Although the absorption coefficient is often approximated as κν ≈ κ0ρ
aT b,

let’s assume here that a = b = 0; i.e., that κν ≈ constant with depth, too.

For an isothermal (constant T ) atmosphere, we derived earlier that

ρ(z) = ρ0 exp
(

−z

h

)

where h =
kBT

µmHg
≈ constant .

The expression for τ(z) boils down to an integral over e−z, and you can show
that

τν(z) = κν ρ(z) h .

From the above, it’s clear that τν drops exponentially with scale height h, just

like density.

κν depends on photon frequency, but for a “mean” value of κ0 we can solve for

the photospheric density,

κ0ρ0h ≈ 2

3
so ρ0 ≈ 2

3κ0h
.

We can get a feel for the magnitude of the photospheric value of ρ by
computing it for main-sequence stars & comparing with core and mean (mass

over volume) values.
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Densities for main-sequence stars:

We shouldn’t forget that κν really varies as a function of ν, so different
frequencies “see” the photophere at different relative heights.

i.e., τν = κνρ(z)h =
2

3
means different things at different values of ν.

ρ(z) = ρ0 e
−z/h ≈ 2

3κνh
❀ e−z/h ≈ 2

3κνρ0h
≈ κ0

κν
❀ z ≈ h ln

(

κν

κ0

)

Thus, at some specific frequencies (with markedly HIGHER values of κν), the
photosphere occurs at a lower density & larger height:

There is one more interesting implication of seeing down to different depths

at different frequencies:

Remember the Eddington-Barbier relation...

If S = S0

(

τ +
2

3

)

then I(µ, 0) = S0

(

µ+
2

3

)

and we take the 1st moment to find H = S0/3.
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This gives the emergent flux:

Frad = π

(

4S0

3

)

= π {S(τ = 2/3)} .

This applies in a non-gray sense, too... for τν and Sν .

At wavelengths with low opacity, we see deeper, and that (usually) means we
see a higher value of Sν at τν = 2/3.

An impressive example of this: H0 edge (Balmer jump) at 3646 Å:

Thus, we have at least 2 good ways of probing the depth dependence of what’s
going on in a stellar atmosphere:

(1) Limb darkening

(2) Spectral features (b-b lines & b-f edges); more about those later.
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