
Gravitational Dynamics: The N ≫ 1 Body Problem

To do:

(1) Re-examination of collisional physics & the Boltzmann equation

(2) Collisionless particle orbits in “known” Φ(r), due to N >>> 1
(3) Collisionless equilibrium statistics & the virial theorem

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1) Let’s start by thinking about how collisions affect dynamics in things like

galaxies & clusters.

Of course, since “space is big,” we’re usually talking about gravitational
deflections (hyperbolic trajectories due to multiple pairwise encounters).

But sometimes there are direct collisions!

These days, treating this process is often the
purview of numerical N -body simulation

codes.

Recent records:

2010: Millennium XXL, N = 3× 1011

2017: PKDGRAV3, N = 2× 1012

2019: Quijote, N = 8.5× 1012 !!!

Challenges:

• Speed: Computing mutual g forces scales as ∼N2. However, the Barnes

& Hut TREE method divides up the volume into nested sets of cells.
Nearby pairs are computed in full. Distant regions are grouped as large

quasi-particles. CPU time scales as N lnN (“linearithmic”) instead of N2.

• Accuracy: If integrating over long times, small errors can accumulate.
Some celestial mechanics codes use symplectic integration −→ reformulates

equations using Hamiltonian/canonical coordinates (p & q) that more
automatically conserve energy & momentum when discretized.

(Or try the 15th-order-accurate Rein & Spiegel (2015, MNRAS, 446, 1424)
method?!)
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For large numbers of stars, we can follow the evolution of their (smooth)
phase-space distribution function f(r,p, t) via the full Boltzmann equation,

∂f

∂t
+ v · ∂f

∂r
+ F · ∂f

∂p
=

(
∂f

∂t

)

coll

How do we treat the summed gravitational effect of “other stars” on the stars

we’re following with f(r,p, t)?

• In some situations, we can ignore collisions & assume the effects are due to
a known smooth potential,

F = −∇U = −m∇Φ =⇒ Φ(r) = −G
∫

d3r′
ρ(r′)

|r′ − r|
where ρ is the spatial mass density of... everything that gravitates
(e.g., stars, gas, dark matter). ρ is a zeroth moment of f .

• However, in some situations the effects of individual, pairwise, grainy
collisions have an impact on the overall evolution of the system, and we

must deal with the infamous collision term on the RHS.

(Gravitational collision theory is a bit nastier than Coulomb collisions in a
plasma. For the latter, at least we had Debye screening to cancel out the forces
at large separations!)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We will be investigating the timescales over which various collisional &

collisionless processes affect an “average” star moving through the system.

But first, we should figure out which interactions matter most: close ones, or

far-away ones.

For collisions, sometimes it’s temping to pay the most attention to the “nearest

neighbors.” However, gravity is a long-range force...

10.2



Consider a uniform-density distribution of stars (all with M∗) in some
cone-shaped wedge of space with constant density of stars n.

The nearby stars exert a stronger force, but there are more stars in “wedges”

that are further away (dr ≪ ri):

What is the magnitude
of the gravitational force
on the test star (at the

origin) due to the various
segments at r1, r2, etc.?

F (ri) ≈ Nstars

GM2
∗

r2i
where Nstars(ri) = nV = n dr 2πr2i (1− cos θ)

Thus,
F (ri) ≈ n dr 2π (1− cos θ)GM2

∗ independent of ri !

and we conclude that distant stars contribute comparably as nearby stars.

Of course, if n is completely uniform (θ = π; full sphere around the test star),
then net F = 0. But most galaxies/clusters have large-scale asymmetries.

Moral: We need to worry about weak, small-angle interactions, just like in
plasma Coulomb collisions... and we can’t even cut it off at bmax.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Consider 2 point masses (m1 & m2) undergoing a hyperbolic scattering event.
In a frame centered on m2,
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For a single small-angle scattering event (b≫ bmin), we saw that

|∆v⊥| ≈ vinit
bmin

b
where here, bmin =

2Gm1m2

m12v2init
=

2G(m1 +m2)

v2init

noting that we must replace q1q2 by Gm1m2.

Binney & Tremaine (and others) tend to work with the 90◦ scattering impact
parameter

b90 =
bmin

2
=

2GM∗
v2

(for m1 = m2 =M∗)

where v ≈ a typical speed in the system.

Using this as our effective bmin, we can sum up multiple small-angle scattering
events for a star of mass M∗, in a field of other identical stars with number

density n, accumulating over a time interval ∆t, as before...

〈∆v2⊥〉 =
8πG2M2

∗ n∆t

v
ln Λ

where the Coulomb logarithm Λ = bmax/bmin, and we saw above that it’s

prudent to assume bmax ≈ Rgal, the overall size of the galactic system.

For larger elapsed times ∆t, the dispersion 〈∆v2⊥〉 grows.

How long will it take for the test star to undergo a sufficient number of
scatterings such that 〈∆v2⊥〉 becomes ≈ v2 ? (i.e., how long will it take for the

star’s orbit to fully randomize/thermalize & “forget” its initial condition?)

We obtain the relaxation time by setting 〈∆v2⊥〉 = v2 and solving for ∆t,

∆t ≡ trelax =
v3

8πG2M2
∗ n lnΛ

.

We would also like to know how trelax compares with:

• tlife (the lifetime or age of the system)

• tcross (the dynamical time or “crossing time” ∼ Rgal/v)

If trelax is small, then collisions are important to the system’s evolution.

Let’s try to simplify the expression for trelax. Assume a large, spherical,
self-gravitating system like a galaxy, filled with N identical stars.
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It’s not terrible to estimate that the star is orbiting ∼circularly on the
outskirts of a ∼centralized mass distribution, with

v2 ≈ GMgal

Rgal

(i.e., vis-viva)

and that for a ∼spherical system containing N stars of mass M∗,

Mgal = NM∗ and n =
N

volume
≈ 3N

4πR3
gal

.

Thus, Λ =
bmax

bmin

≈ Rgal

b90
=

Rgal

2GM∗/v2
=

Mgal

2M∗
∼ N

2
(so lnΛ ∼ lnN)

and we can use all of the above to express the ratio

trelax
tcross

=
v4/Rgal

8πG2M2
∗n ln Λ

≈ ❀ ❀ ≈ N

6 lnN

and this ratio often is ≫ 1. More precise numbers are given by Meiron &
Kocsis (arXiv:1801.01123). Let’s examine some example environments:

Rgal rms v tcross tlife
Milky Way (MW) Galaxy 10 kpc 100 km/s 100 Myr ∼10 Gyr
Globular cluster (GC) 5–10 pc 10 km/s 0.5–1 Myr ∼10 Gyr

Young open cluster (OC) 2 pc 0.3 km/s 5 Myr 50–100 Myr

• MW: N ≈ 1011 so trelax/tcross ≈ 6× 108. However, given the value of
tcross, we estimate trelax ≈ 1017 years ≫ age of the universe! Thus, collisions

are irrelevant in our Galaxy; it’s safe to use collisionless Φ.

• GC: N ≈ 105 so trelax/tcross ≈ 1400. Globulars are small, so tcross isn’t
that big. Thus, trelax ≈ 0.1–1 Gyr, shorter than its lifetime. Collisions
probably have influenced the system over its lifetime. (That’s probably

why it’s spherical... it has relaxed!)

• OC: N ≈ 102 so trelax/tcross ≈ 3. Collisions must play a key role in the
dynamics of a young, star-forming cluster! They’re smaller than GCs, but
their velocity dispersions are tiny. Thus, trelax ∼ 15 Myr, a few times

shorter than its lifetime. Maybe collisional processes are partially
responsible for dissolving clusters like this?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Okay, so what happens when star–star collisions are important?

In general, the evolution of one object through a field of neighbors obeys much
of the same physics as charged particles undergoing Coulomb collisions.

Recall that a “fast” object will be slowed down and thermalized via
Chandrasekhar’s dynamical friction (cumulative effect of many deflections).

Examples:

• Galactic cannibalism: Satellite galaxies (GCs, LMC, SMC) that orbit a
massive central galaxy lose bulk kinetic energy to thermal energy (i.e.,

vth ↑). Their orbits decay, and they spiral in toward the central galaxy.

• BH consolidation: If one finds a supermassive black hole in the
outskirts of a large galaxy (say, after a merger event), it will quickly

(t ∼< 3 Gyr) inspiral to the galactic center. The same goes for stellar-mass
BH or NS anywhere in the central ∼10 pc of the galaxy.

Let’s examine the first idea (satellite inspiral) in a bit more detail, following

Binney & Tremaine, 2nd ed., § 8.1.1.

Consider an object of mass Mobj orbiting a galaxy of mass Mgal at a distance r.
Recall estimates...

v2 ≈ GMgal

r
tcross ≈ r

v
.

As the object plows through, it collides with stars, resuling in:
spread in v⊥ ... slowing down in v‖. For an orbiting object, dv‖/dt < 0 means

that it loses angular momentum. B&T solved for the friction time over which
it will spiral into r ≈ 0,

tfric ≈ 1.17

lnΛ

r2 v

GMobj

.

Makes sense, because if we use above assumptions of a circular orbit, we get

tfric
tcross

≈ 1.17
Ñ

ln Ñ
where Ñ =

Mgal

Mobj

which is similar to the trelax/tcross result we obtained above.

For our neigbors (LMC, SMC), tfric ∼ 10 Gyr. They’ll spiral in eventually.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Gravitational Focusing & Dynamical Friction

Lastly, let’s examine the rare cases of large deflections and actual star–star
impacts, which can happen in the dense cores of GC/OC systems.

(Interestingly, this theory also applies to how planetesimals gobble up debris to
grow into planets!)

Above, we estimated trelax as a sum of ≫ 1 weak, small-angle collisions.
However, even one large-angle collision can be hugely important to a given

star’s trajectory. Let’s figure out how frequent those are.

Consider 2 stars of equal masses M and radii R, approaching one another with
relative velocity v∞ and impact parameter b. In the CM frame:

This is a hyperbolic Keplerian orbit, but we can use some basic physics to

figure out whether or not they will physically collide.

The actual criterion for “will they collide?” is rc ≤ 2R.

But the outcome depends on their masses:

• For small enough M , gravity may be ignored, and rc ≈ b. Thus, they will
collide only if b ≤ 2R.

• For large M , there will be mutual gravitational focusing that decreases

rc (i.e., increasing the cross section for direct collisions).

In the two-body problem, E & ℓ are constants of motion. First consider total
energy,

E = 1
2
mv2 − GM2

r
= constant, where reduced mass is m = M/2 .

and v is the relative velocity between the two objects.
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Evaluate E both at r → ∞ (U → 0) and at closest approach (r = rc and
v = vmax),

1
4
Mv2∞ = 1

4
Mv2max − GM2

rc
.

Second, consider the total angular momentum of the system (measured about
the center of mass)

ℓ =

∣
∣
∣
∣
∣

2∑

i=1

(ri × pi)

∣
∣
∣
∣
∣
= 2M |r1 × v1| = 2M r⊥1 v1

where the last step is due to symmetry about the center, and r⊥1 is the
projected distance (from the CM) perpendicular to the star’s velocity vector.

Thus, for ℓ being constant at r → ∞ and at closest approach,

2M

(
b

2

)(v∞
2

)

= 2M
(rc
2

)(vmax

2

)

=⇒ vmax

v∞
=

b

rc
.

If gravity plays a major role, then b≫ rc, so that vmax ≫ v∞.

Thus, inserting vmax into energy conservation, 1
4
Mv2∞ = 1

4
M

(
b2v2∞
r2c

)

− GM2

rc
.

How much focusing actually occurs? We could solve for rc in terms of the
known initial conditions b and v∞, but it’s also insightful to solve for b,

b = rc

√

1 +
4GM

rc v2∞

and it makes sense that for small masses (weak deflection), b ≈ rc.

If we want to study actual physical impacts, this tells us that a stellar collision

will occur only when rc ≤ 2R, and

when the initial b is ≤ bcoll ≡ 2R

√

1 +
2GM

Rv2∞
.

10.8



The collision criterion is b ≤ bcoll, and bcoll is larger than in the weak-gravity
limit (in which b ≤ 2R ensured a collision).

For a spherical star, V 2
esc =

2GM

R
, so bcoll = 2R

√

1 +
V 2
esc

v2∞

and the effective cross section for direct collisions is σcoll = πb2coll .

For a solar-type star (Vesc ≈ 600 km/s) in a typical GC with r.m.s.

v∞ ≈ 10 km/s, the gravitational focusing enhancement in the cross section is a
factor of (1 + 602) ≈ 3600. A huge factor!

We’ve seen that the mean collision rate is given by

νcoll = t−1
coll ≈ n v∞ σcoll

where we can think about v∞ as the most-probable relative speed between any

two members of the cluster.

Binney & Tremaine (§ 7.5.8) work this out more exactly for a Maxwellian
distribution of speeds (with thermal speed vth = vσ

√
2).

The numerical factors are slightly different, but overall it’s similar to what
we’d get from the above estimates. They get:

t−1
coll = 16

√
π

2
n vthR

2
(

1 +
V 2
esc

v2th
︸︷︷︸

Θ

)

where Θ = the Safronov number.

For the dense central regions of a GC, n ∼ 105 stars/pc3, and for similar

parameters as above, tcoll ∼ 1011 years (> age of universe). However, without
focusing, it would be Θ ∼ 3600 times longer (> 1014 years)!

Recall that for a GC, trelax ≈ 109 years. One can show that

tcoll
trelax

≈ 0.4 lnΛ
Θ2

1 + Θ

which is about 100 in our example. This means large-angle collisions are
“less important” than the summed effect of small-angle collisions, just like in

plasmas.
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There are several interesting implications of large Safronov number...

• Many galaxies and clusters undergo core collapse into a supermassive
black hole. This is also a gravitationally dominated process. As n ↑,
collisional relaxation speeds up, too.

Binney & Tremaine (§ 7.5.3) show that core collapse occurs over a time

that scales ∼universally like

tcollapse ≈ 300 trelax .

Thus, for young systems (not yet collapsed), tcoll is always ≫ both

{trelax, tcollapse}, so direct collisions are negligible.

However, for older systems (in late stages of collapse), vth ↑ and Θ drops

to values of only 5–50. tcoll is now only slightly bigger than trelax. We can
see various results of stellar collisions actually occurring:

– 2 main-sequence stars → “blue stragglers” (seen in old GCs)

– Red giant + NS → spins up the NS; “recycled pulsars”

– Close binary + 3rd star → a huge momentum transfer ejects
“hypervelocity stars” (see homework)

• Let’s switch gears to protoplanetary disks full of planetesimals. How do

planets grow? In the cold, icy outer solar system, each direct collision is
likely to “stick” as an agglomeration. Thus, we can write

dM

dt
≈ ∆M

∆t
≈ M

tcoll

Note that the mass on the left side is the one body that we’re tracking in

time (as it grows), but on the right side it’s the mass of each “target”
planetesimal that it grabs every tcoll. Thus,

dM

dt
≈ M nvth σcoll ≈ ρ vthR

2
(

1 +
2GM

Rv2th︸ ︷︷ ︸

Θ

)

(Safronov’s equation).

We assume ρ & vth are constants, and M ∝ R3 for icy/rocky material.

10.10



The low-mass limit (Θ ≪ 1) is valid in the early stages of agglomeration.
There, we have

dM

dt
∝ R2 ∝ M2/3 =⇒ M1/3 ∝ R ∝ t− t0 (slow growth)

However, at later stages, the high-mass limit (Θ ≫ 1) is valid, with

dM

dt
∝ R4 ∝ M4/3 =⇒ −M−1/3 ∝ t− t0 i.e., R ∝ 1

t0 − t

i.e., a rapid increase that blows up at a finite time. Runaway growth
like this can take a 1 km planetesimal up to a 1000 km protoplanet.

Agglomeration stops when either:

(a) M grows to the point of really being able to perturb orbits of nearby
planetesimals. “Eccentricity pumping” scatters them away, like in an

unstable MMR.

(b) The new protoplanet has cleared out its local orbit of other

planetesimals – i.e., eventually ρ→ 0.
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(2) Collisionless Potential Theory

Let’s now put aside collisions and think about how stars move in large systems
like the Milky Way (N ∼ 1011) for which the net gravitational effect of

“all other” objects (stars, gas, dark matter) can be treated via a known
potential Φ(r).

Earlier, we reviewed the basics of the Poisson equation...

∇2Φ = 4πGρ ⇐⇒ Φ(r) = −G
∫

d3r′
ρ(r′)

|r′ − r|
i.e., if we know either ρ or Φ, in principle we can solve for the other one. For
full derivation, using Gauss’ divergence theorem, see Binney & Tremaine § 2.1.

Spherically symmetric distributions of mass can be treated by summing up
the mass in concentric shells,

dMr = 4πr2 ρ(r) dr , and Mr(r) =

∫ r

0

dMr′(r
′)

where the integrated Mr(r) is the total mass interior to r.

In the spherical case, the gravitational acceleration depends only on mass

interior to r,

g = −∂Φ
∂r

êr = −GMr(r)

r2
êr

but the full potential formally depends on the mass distribution both inside
and outside,

Φ(r) = −GMr(r)

r
− G

∫ ∞

r

dMr′(r
′)

r′
.

Example: constant-density sphere (used a lot in astr–5700):
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In many realistic/extended/centrally-condensed spherical systems, we might
expect:

• Innermost regions would behave like the constant–ρ model.

• Outer regions would behave as if “all” interior mass dominates the

gravitational force; i.e., Φ ∼ −GM/r.

Thus, people have searched for functions that bridge both limits:

(a) Plummer’s (1911) model:

Φ = − GM√
r2 + a2

−→ ρ =
3M

4πa3

(

1 +
r2

a2

)−5/2

∝ r−5 as r → ∞

(b) Hénon’s (1959) “isochrone potential:”

Φ = − GM

a+
√
r2 + a2

−→ ρ is complicated. As r → ∞, ρ ≈ aM

2πr4

(c) For dark matter halos, one often starts with a parameterized density,
then derives the potential,

ρ =
ρ0

(r/a)α[1 + (r/a)]β−α

and some popular choices of the exponents are

α = 2, β = 4 (Jaffe 1983) Φ = −4πGρ0 a
2 [ln(1 + a/r)]

α = 1, β = 4 (Hernquist 1990) Φ = −2πGρ0 a
2 (1 + r/a)−1

α = 1, β = 3 (NFW: Navarro et al. 1995) Φ = −4πGρ0 a
3/r [ln(1 + r/a)]

α = 1, β = 3.5 (super-NFW: Lilley et al. 2018) Φ = complicated...

Of course, most galaxies are flattened (non-spherical) systems, so one often

generalizes to axisymmetry in cylindrical coordinates (R,ϕ, z), where
ρ and Φ depend only on R & z.

So what? Who cares? We’d like to know how Φ and ρ behave in our own

galaxy. How do we measure them? Stellar orbits!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Stellar Orbits in an Axisymmetric Potential

We don’t need to know the full form of Φ(R, z) in order to learn something
useful about how stars behave. Let’s work out Lagrangian dynamics for a

single test particle of mass m, in cylindrical coordinates:

L = m

{
1

2

[

Ṙ2 + (Rϕ̇)2 + ż2
]

− Φ(R, z)

}

.

The resulting E–L equations of motion are similar to those of the two-body

problem. Start with angular momentum conservation from the ϕ equation:

d

dt

(
R2 ϕ̇

)
= 0 −→ j = R2 ϕ̇ = constant

and define an effective potential,

Φeff = Φ +
1

2
R2 ϕ̇2 = Φ +

j2

2R2

where the 2nd term is a positive “centrifugal barrier” like in the two-body

V (r) plot. Thus, the E–L equations for R and z are given by

R̈ +
∂Φeff

∂R
= 0 and z̈ +

∂Φeff

∂z
= 0 .

We’ve “effectively” transformed these equations into the rotating frame. The

equations of motion govern motion in a (corotating) meridional plane (R, z).

Can circular orbits exist?

Like in the Keplerian two-body problem, they would occur at local minima in
Φeff. This occurs when

∂Φeff

∂z
= 0 and

∂Φeff

∂R
= 0 =

(
∂Φ

∂R
− j2

R3

)

=

(
∂Φ

∂R
−Rϕ̇2

)

.

The 1st condition occurs anywhere in the equatorial plane (z = 0) as long as

Φ(R, z) is symmetric about z = 0.

Aside: Stars that remain in the equatorial plane at all times have no way of

knowing that Φ isn’t spherically symmetric. Thus, its orbit will be the same as
that for a spherical potential.
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The 2nd condition above occurs at the so-called “guiding-center radius” Rgc.
Thus, circular orbits occur when

Rgcϕ̇
2 =

(
∂Φ

∂R

)

R=Rgc, z=0

and Ω = ϕ̇ =

√

1

Rgc

(
∂Φ

∂R

)

R=Rgc, z=0

which usually isn’t solvable analytically for Rgc. However, if you know Rgc, you
can solve for Ω.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In disk galaxies, many stars are indeed on (nearly) circular orbits. Thus, it’s

useful to derive approximate solutions for orbits with R ≈ Rgc.

For a given Ω, put a star at R 6= Rgc and z 6= 0. What will it do?

Define: x = R − Rgc and let’s assume |x| ≪ Rgc

so that the local minimum of Φeff occurs exactly at x = 0 and z = 0. Expand
Φeff in a Taylor series about this point...

Φeff(x, z) = Φeff(0, 0) +
✟
✟
✟
✟
✟
✟
✟

x

(
∂Φeff

∂R

)

0

+
✟
✟
✟
✟
✟
✟
✟

z

(
∂Φeff

∂z

)

0

+

+
1

2

[

x2
(
∂2Φeff

∂R2

)

0

+
✘✘✘✘✘✘✘✘✘✘

2xz

(
∂2Φeff

∂R ∂z

)

0

+ z2
(
∂2Φeff

∂z2

)

0

]

+ · · ·

where subscript 0 means to evaluate it at x = 0 and z = 0.

The 1st order terms vanish because we’re expanding around the point at which

they’re defined to be zero. The 2nd order cross-term (∝ 2xz) vanishes because
of symmetry around the z = 0 plane.

Truncating the expansion at 2nd order is called the epicycle approximation,
and we define

κ2 ≡
(
∂2Φeff

∂R2

)

0

(the radial/epicycle frequency)

ν2 ≡
(
∂2Φeff

∂z2

)

0

(the vertical frequency)

Here, these are “constants.” If we know the full form of Φ(R, z), we can

compute how κ, ν, and Ω all vary with Rgc.
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Thus,

Φeff(x, z) ≈ Φeff(0, 0) +
1

2
κ2x2 +

1

2
ν2z2

and we can get the equations of motion by taking ∂Φeff/∂R and ∂Φeff/∂z.

We see that x and z evolve sinusoidally, like displacements of harmonic
oscillators, because the equations of motion reduce to

ẍ + κ2 x = 0 and z̈ + ν2 z = 0

with frequencies in the two directions that don’t have to be equal. In general,
κ 6= ν 6= Ω. Particles bob in/out and up/down relative to the undisturbed

circular orbit.

Note: since ϕ̇ = j/R2, and R oscillates in/out, that ϕ must also oscillate

“forwards/backwards” along the orbit. To 0th order, we can assume ϕ̇ ≈ Ω.

Recall the condition for circular orbits:

Ω2 =
1

Rgc

(
∂Φ

∂R

)

0

, so we can evaluate ❀ κ2 =

(

R
∂Ω2

∂R
+ 4Ω2

)

0

.

Note that ideal Keplerian rotation (in the outer regions of galaxies where
Φ ∼ −GM/r) implies

Ω2 ∝ 1

R3
=⇒ κ =

√

−3Ω2 + 4Ω2 = Ω

and perturbed orbits are ellipses, like we derived in homework.

On the other hand, for either rigid rotation or the constant-ρ model

(∂Φ/∂r ∝ r) in the inner regions of galaxies,

Ω = constant =⇒ κ = 2Ω

and in most galaxies, we see that Ω ∼< κ ∼< 2Ω .

In the 1920s, Jan Oort measured
these properties with local stars

around us at R ∼ 8 kpc. He
was first to prove that the

galaxy rotates differentially.
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Observations give us the relative velocity: Vobs = v⊙ − v∗, via

• Doppler shifts of spectral lines =⇒ Vobs,r (line-of-sight component).

• Proper motions =⇒ Vobs,t (transverse “plane-of-sky” component).

If both the Sun & the other star are in ∼circular orbits around the galactic
center, then the data ought to be fit well by

Vobs,r/D = A sin 2λ

Vobs,t/D = A cos 2λ + B

Frequency-like fitting parameters A & B are the Oort constants:

• A describes relative shear between us & the other star.

• B describes mean galactic rotation (vorticity) in our neighborhood.

Given that these can also be described by Ω(R), the formal definitions of the

Oort constants are

A(R) = −R
2

dΩ

dR
=

1

2

(
Vc
R

− dVc
dR

)

B(R) = −R
2

dΩ

dR
− Ω = −1

2

(
Vc
R

+
dVc
dR

)

where the circular speed Vc = RΩ =
√

R|∇Φ|.

Other useful identities can be derived:

Ω = A− B , κ2 = 4B(B − A) ,
κ

Ω
=

√

4B

B − A
.

Limiting cases (& observations):

Rigid rotation (Ω = constant) A = 0 B = −Ω κ/Ω = 2

Flat rotation curve (Ω ∝ R−1) A = 0.5Ω B = −0.5Ω κ/Ω =
√
2

Keplerian rotation (Ω ∝ R−3/2) A = 0.75Ω B = −0.25Ω κ/Ω = 1

Hipparcos (1997) observations A ≈ 0.545Ω B ≈ −0.455Ω κ/Ω ≈ 1.35

Gaia DR1 (2016) observations A ≈ 0.563Ω B ≈ −0.438Ω κ/Ω ≈ 1.323
Gaia DR2 (2020) observations A ≈ 0.554Ω B ≈ −0.446Ω κ/Ω ≈ 1.336

10.17



Because κ is not an integer multiple of Ω,

our local rotation curve is close to flat, and the
Sun’s orbit is a non-closed “rosette!”

FYI, in our local neighborhood:

Rgc ≈ 8 kpc
Ω ≈ 27.2 km/s/kpc

Vc ≈ 218 km/s
Rotation period (2π/Ω) ≈ 226 Myr
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What is the vertical frequency ν? Measuring it is harder than for κ.

Jan Oort realized that in our highly flattened disk galaxy,

ν2 =
∂2Φeff

∂z2
≈

∣
∣
∣
∣

∂2Φ

∂z2

∣
∣
∣
∣
≫

{∣
∣
∣
∣

∂2Φ

∂R2

∣
∣
∣
∣
,

∣
∣
∣
∣

∂2Φeff

∂R2

∣
∣
∣
∣
, κ2 , A2 , B2 , Ω2

}

(especially if the rotation curve is close to “flat”)

Poisson’s equation connects these 2nd derivatives to the local mass density

4πGρ = ∇2Φ =
1

R

∂

∂R

(

R
∂Φ

∂R

)

+
1

R2

∂2Φ

∂ϕ2
+
∂2Φ

∂z2
≈ ∂2Φ

∂z2
= ν2 .

In our local solar neighborhood,

{
ν/Ω ≈ 2.5 → 3.2

ρ ≈ 0.1 → 0.15 M⊙/pc3

}

and locally, ν contributes ∼80% of the total ∇2Φ.

Counting stars is one way to estimate ρ (to then compute ν), but that may
miss gas, dark matter, and possibly dim white dwarfs. We’d need the total ρ

that exerts gravitational force.

One can use stellar dynamics to do a better job, via ν. Recall the

collisionless Vlasov equation for stars (with a = −∇Φ),

∂f

∂t
+ v · ∂f

∂r
− ∇Φ · ∂f

∂v
= 0 .

We can take the standard fluid-moment equations by integrating over velocity
space. (Galaxy people call these the Jeans equations.)
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Recalling n =

∫

d3p f , & assuming n〈v〉 = nu =

∫

d3p v f ≈ 0 ,

the 1st moment (momentum conservation equation) is, in general,

∂

∂t
(n〈v〉) + ∇ · (n〈vv〉) + n∇Φ = 0 .

If we use cylindrical coordinates and assume a time-steady (∂/∂t = 0) and
axisymmetric (∂/∂φ = 0) system, we can simplify the 3 components of this

equation. It’s kind of just hydrostatic equilibrium...

When deriving ρ ≈ ν2/(4πG), it’s customary to just worry about the

z component of the equation...

∂

∂R
(n〈vRvz〉) +

∂

∂z

(
n〈v2z〉

)
+
n〈vRvz〉
R

+ n
∂Φ

∂z
= 0 .

To obtain ν2, one just needs to solve the above for ∂Φ/∂z, then take another z

derivative.

Caveats:

• As noted above, in “flattened” galaxies, the ∂/∂z term tends to dominate,

such that one often sees

ρ ≈ 1

4πG

∂2Φ

∂z2
≈ − 1

4πG

∂

∂z

[
1

n

∂

∂z

(
n〈v2z〉

)
]

.

• These statistical variances of nearby stellar velocities 〈v2z〉 & 〈vRvz〉 can
be measured via Doppler shifts & proper motions.

• One needs only to measure the relative spatial variation of n(z).

Its absolute normalization divides out of every term.

• Taking two z-derivatives of noisy data makes for an uncertain result!
Bahcall (1984, ApJ, 276, 169) found some clever tricks to reduce, but not

eliminate, the uncertainties.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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It’s time to be more exact about what’s going on here in the Milky Way
Galaxy.

There have been several decades of gradual improvement in empirical models

of Φ(R,ϕ, z). Putting aside non-axisymmetry (bars, triaxial halos), let’s look
at a recent one that was optimized for accuracy over a large dynamic range:

r = 5 pc to 100 kpc!

Scott Kenyon et al. (2008, ApJ, 680, 312) specified 4 components:

Φ(R, z) = ΦBH(r) + Φbulge(r) + Φdisk(R, z) + Φhalo(r)

(a) Supermassive Black Hole: For scales larger than a parsec or so, Sgr A∗

is more or less just a Newtonian point-mass: ΦBH ≈ −GMBH/r.

(b) Central Bulge: Mostly gas-free and composed of old Pop II stars, a
spherically symmetric Hernquist (1990) profile is a good fit, with a ≈ 0.1 kpc.

(c) Galactic Disk: An axisymmetric spheroidal can account for both the

“thin” Pop I disk of recent star formation, and for the slightly older spheroidal
halo that extends out to the GCs. Miyamoto & Nagai (1975) postulated:

Φdisk(R, z) = − GMdisk
√

R2 + [a+ (z2 + b2)1/2]2

which reduces to the Plummer (1911) model in the midplane z = 0.

The Kenyon et al. model uses a = 2 kpc, b = 0.3 kpc.

(d) Dark Matter Halo: Even though it’s probably more of a triaxial
ellipsoid, a spherical NFW model (with a = 20 kpc) does a good job of

modeling its overall gravitational effects.

More recently than 2008, it’s been realized that there’s also a very hot
(106–107 K) extended halo of plasma going out a few hundred kpc, which

doesn’t contain much mass, but may carry half of the MW’s total angular
momentum (e.g., Hodges-Kluck et al. 2016, ApJ, 822, 21).
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For the midplane (z = 0), we’ll plot:

Vc(R) = RΩ =
√

R(∂Φ/∂R) (matching grav. & centripetal accel.)

Vesc(R) =
√

2|Φ| (matching kinetic & potential energy: 1
2
mV 2

esc = m|Φ|)

Rotation is indeed pretty “flat” in the vicinity of the spiral arms. The local

differential-rotation shear (which spins up GMCs) is difficult to see in this plot.

At the Sun’s orbit, Vc = 219 km/s, Vesc = 638 km/s.

In the inner parts of the galaxy, Vesc ∼ 1000 km/s!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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We’ll talk a bit more about the motivations for dark matter (DM) later, but
it’s interesting to note a recent (and still hotly debated!) piece of observational
information from a big-data study of ∼150 galaxies.

McGaugh et al. (2016, PRL, 117, 201101) & Brouwer et al. (2021, A&A, 650,
A113) used rotation curves to estimate gobs = V 2

c /R. Dominated by DM?

They also used observed intensity profiles to estimate the ρ(R, z) of luminous
matter, used Poisson’s equation to get Φ, and took gbaryons = |∂Φ/∂R|.

Each galaxy produces its own independent curve in (gobs, gbar) space.
Amazingly, the curves all overlap with one another:

Of course, gobs > gbar, and it’s well-known that the tiniest galaxies have the
most relative contribution from dark matter (i.e., gobs/gbar ≫ 1) because their

low gravity allows gas/plasma to be easily lost via jets/winds.

But the tight correlation is surprising. One conclusion is that the dark matter

is “fully specified” by the baryons. Maybe that’s MOND...?

There are other ideas... Many think the DM halo determines the galaxy’s
overall potential well, and baryons “fill up” the wells proportionally in different

galaxies. Or maybe young galaxies accrete both DM & baryons together
(Marasco et al., arXiv:2105.10508)?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The baryonic matter in galaxy disks often exhibits Spiral Arms.

If a galaxy rotates differentially [Ω(R) 6= constant], it’s not hard to see that
any longitudinal “spoke” of higher ρ would get “wound up” into a spiral.

For a flat rotation curve,

Winding problem: Over the lifetimes of most galaxies, there would be way

too much winding – which we don’t see.

Several possible solutions continue to be discussed, but the most accepted one

came in the 1960s. Lin & Shu realized that spiral arms could be density
waves; i.e., patterns of higher ρ that propagate through the disk and maintain

their “pitch-angle coherency” over time.

Spirals in rotating fluids don’t have to be a single rigid structure. Think about

the “garden sprinkler” analogy, in which one longitude of a central source that
rotates and spits out parcels that flow out radially:

Even though v is radial (in the nonrotating frame), the streakline pattern is a
spiral that rotates with Ω, and is fixed in a frame rotating with Ω.

Galactic spiral density-wave patterns are a close cousin of this effect. They
consist of stars on closed orbits in some fixed rotating frame of reference

(not necessarily at Ω).
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In fact, closed orbits are a necessary (but not sufficient) condition for orbiting
patterns to stay coherent over long times.

We won’t delve into full-on density-wave theory, but it is straightforward to

show that there can be a rotating frame in which star orbits remain closed over
a range of distances corresponding to observed spiral arms.

Recall the epicycle perturbations from a circular orbit.

The orbit bobs in & out in R with frequency κ (period tR = 2π/κ).

To zero order, the star also orbits around in ϕ with angular frequency Ω
(period tϕ = 2π/Ω).

Consider ∆ψ = {the azimuthal angle traversed over time tR} ≈ ΩtR .

Orbits are closed only if

∆ψ = 2π
n

m
for n,m = integers.

However, we could choose to view a parcel in a frame that rotates with a

pattern speed Ωp defined such that the orbit is closed. In this frame,

∆ψp = ∆ψ − ΩptR = 2π
n

m
.

Using the definitions above, we can solve for

Ωp = Ω − nκ

m
.

In our galaxy, we can compute Ωp(R) for a number of choices for n & m. It

turns out that if we choose n = 1, m = 2, then

Ωp ≈ constant, over the range R ≈ 3 → 15 kpc.

Closed orbits in this frame collect into a nested pattern that maintains a
∼constant pattern speed consistent with the observed spiral arms.

(See figures on next page.)
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Note that each concentric “ring” is a closed ellipse, but their longitudes of

periapsis are varying gradually with increasing R.

Because Ω 6= Ωp at any radius, stars pass through the arms, like cars through a

“gaper-delay” traffic jam.

Binney & Tremaine § 6.2 discuss more about the resonances (Lindblad) and

stability criteria (Toomre) that help maintain spiral density waves over long
times, even when Ωp isn’t exactly constant.

It is possible to measure Ωp observationally, too... see Peterken et al.
(arXiv:1809.08048).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the final part of this section, we’ll look at one more way to squeeze some
useful insights out of statistics...
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(3) Collisionless Equilibrium Statistics −→ The Virial Theorem

How do the spatially integrated properties of gravitationally-bound objects
relate to one another? Consider conservation laws:
[
Boltzmann/
Vlasov eqns

]

→
∫

d3p →
[

Fluid/Jeans
moment eqns

]

→
∫

d3r →
[

virial theorem
]

Formally, one can start with the fluid momentum conservation equation from

earlier. Multiplying each term by the mass of an object converts n to ρ,

∂

∂t
(ρ〈v〉) + ∇ · (ρ〈vv〉) + ρ∇Φ = 0 .

Each term is a vector. There are 2 things we could do.

• Take tensor/outer product of each term with r, then integrate over the

system volume d3r. This gives the tensor virial theorem.

• Take scalar/dot product of each term with r, then integrate over the

system volume d3r. This gives the scalar virial theorem.

Either way, we’d have to take the 1st moment in p, then the 1st moment in r.

We won’t actually go through with it.

Binney & Tremaine explore both methods, and eventually note that the trace

of the tensor equation gives the scalar equation. The math is complicated, and
this is a physics class! Thus, we’ll derive the scalar virial theorem using an

alternate approach from Goldstein’s Classical Mechanics § 3.4:

Consider a system of N point-masses with masses mi, position vectors ri, and

momenta pi. The force on particle i is Fi, for which Newton’s 2nd law says

Fi =
dpi

dt
.

Define the summed quantity Γ ≡
N∑

i=1

ri · pi .

What is it? For non-relativistic particles,

Γ =
∑

i

mi

(

ri ·
dri
dt

)

=
∑

i

mi
1

2

d

dt

(

ri · ri
)

=
1

2

d

dt

(∑

i

mi|ri|2
)

︸ ︷︷ ︸

I

=
1

2

dI

dt
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where I = the total moment of inertia of the system, with respect to the
adopted origin.

{ For an extended system, its total angular momentum L = IΩ, and an

analogue of Newton’s 2nd law is that the applied torque = d(IΩ)/dt. }

Alternately, we can examine the time derivative of Γ, from its definition,

dΓ

dt
=

∑

i

(
dri
dt

· pi

)

+
∑

i

(

ri ·
dpi

dt

)

=
∑

i

mi

(
dri
dt

· dri
dt

)

+
∑

i

(ri · Fi)

This lets us write the scalar virial theorem in its usual form

dΓ

dt
=

1

2

d2I

dt2
= 2EK + EG

where EK is the total kinetic energy of the system,

EK =
∑

i

[
1

2
mi

(
dri
dt

· dri
dt

)]

=
∑

i

(
1
2
mi v

2
i

)

and

EG =
∑

i

(ri · Fi)

can be shown to be the total gravitational potential energy of the system.

(Recall the work-energy theorem.) Note that for our system of N particles, we
write

Fi =
∑

j 6=i

Gmimj
rj − ri
|rj − ri|3

which we should note is an attractive force. Particle i feels a force that points
toward each of the other j particles. Thus,

EG =
∑

i

∑

j 6=i

Gmimj

(

ri ·
rj − ri
|rj − ri|3

)

.

This is a sum over all possible N(N − 1) pairings of particles.
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The sum includes reciprocal pairs, for which we know Fab = −Fba

EG = · · · + Gmamb

(

ra · rb − ra
|rb − ra|3

)

+ · · · + Gmbma

(

rb · ra − rb
|ra − rb|3

)

+ · · ·

and since N(N − 1) is always an even number, it’s always possible to group

each reciprocal pair together,

EG = · · · + Gmamb

|rb − ra|3
[

− (rb − ra) · (rb − ra)
]

+ · · ·

and now there are only N(N − 1)/2 terms in the sum, which correspond only

to the full list of unique pairs, and

EG = −
∑

i

∑

j<i

Gmimj

|rj − ri|

which is exactly the potential energy U we used for the N = 2, 3-body problem.

FYI, sometimes one sees this written as

EG = −1

2

∑

i

∑

j 6=i

Gmimj

|rj − ri|
for the sum over all pairs,

which essentially “double counts,” then corrects for it afterwards.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For those of you interested in STARS, I’ll include an alternate derivation of the
time-steady virial theorem (i.e., assuming d2I/dt2 = 0) for self-gravitating

spheres of gas/plasma, instead of the N -body particle system being studied
here:

Assume a static, spherical distribution of gas obeying Maxwell-Boltzmann
statistics as derived earlier. No rotation, no big mass motions, no magnetic
fields, etc.

Total energy: Etot = EK + EG

EK is just the total thermal energy due to random motions, i.e.,

EK =

∫

dV U =

∫

dV
P

γ − 1
for ideal gas, or any system with const γ.

Also,

V =
4

3
πr3 , dV = 4πr2 dr .
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What about EG? For test particles of mass m in the field of a gravitating body
of mass M∗, we know that

EG = −GM∗m

r
where r is the distance between the two bodies. So, for a star in its own
potential well, it’s analogous to write

EG = −
∫

dMr
GMr

r

where the equation describing mass conservation in concentric shells is given by

∂Mr

∂r
= 4πr2 ρ .

We also already know about one main “link” between gravity and thermal
pressure: hydrostatic equilibrium. This will serve as our starting point for
building the virial theorem:

dP

dr
= −GMr

r2
ρ .

Multiply both sides by the volume V ,

V
dP

dr
= −4

3
πr3ρ

GMr

r2
= −1

3

(
4πr2ρ

) GMr

r
= −1

3

(
dMr

dr

)
GMr

r

where the last equality takes advantage of mass conservation. Juggle a bit, to

get

V dP = −1

3
dMr

GMr

r
.

Now we can integrate over the stellar volume. The RHS is simply EG/3.
The LHS requires integration by parts:

∫ surface

core

V dP = [PV ]surfacecore −
∫ surface

core

dV P

The first term has two parts, each of which is zero: (1) At r = 0, we know
that V = 0. (2) At r = R∗, we often assume that P → 0, when the star is

surrounded by the vacuum of space.

The second term is closely related to EK, so the static form of the virial

theorem is

EG
3

= (1− γ)EK i.e., 2EK + EG = 0 for γ = 5/3.
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To simplify things a bit, consider constant-density, constant-temperature
spheres of gas with arbitrary values of M , R, and T . We can write

EK ≈ MkBT

µmH

and EG ≈ −GM
2

R
.

If these values are completely arbitrary, there are three possibilities:

If 2EK > |EG| , the sphere is unstable to expansion

2EK = |EG| , virial equilibrium holds; it’s bound & stable

2EK < |EG| , the sphere is unstable to collapse

This leads to the Jeans criterion for a molecular cloud to begin collapsing

into a protostar. If the third option above is true, then

GM

R ∼>
kBT

µmH

which is kind of equivalent to V 2
esc ∼> v2th.

In other words, for collapse to be possible, most particles in the distribution

must be trapped in the sphere’s potential well.

Thus, using ρ =
M

4πR3/3
=⇒ R =

(
3M

4πρ

)1/3

one can define a “Jeans mass”

MJ ≈
(

kBT

µmHG

)3/2
1

ρ1/2

and if a cloud has M > MJ, it will collapse. If you collect together enough

mass in a small enough space, gravity will win.

On the other hand, when one is in virial equilibrium, it’s interesting that
the internal temperature is given (approximately) by

T ≈ GMµmH

kBR
.

A star’s core temperature is not set by esoteric physics of nuclear burning.
It’s just gravity!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now back to galaxies...
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Applications of the Virial Theorem

In practice, the time-steady virial theorem (2EK + EG = 0) is used to study
statistical equilibrium properties of large systems like galaxy clusters.

Big assumption: Ergodicity −→ [ time averages ≈ ensemble averages ]

i.e., we often assume that if the system is left to its own devices, it will live
∼forever, and (eventually) pass arbitrarily close to ∼every point in phase

space.

In practice, an instantaneous snapshot/sample involving sums over all N ≫ 1
particles “ought” to trend to the time/ensemble average, too.

Fritz Zwicky (1933, 1937) first applied the virial theorem as a cluster mass
estimator. What quantities can actually be measured?

Kinetic energy:

EK =
1

2

∑

i

miv
2
i =

1

2
Mtot〈v2〉 where 〈v2〉 =

∑
miv

2
i

∑
mi

∼ 1

N

∑

i

v2i .

Our goal is to solve for Mtot.

Distant galaxies don’t show proper motions on the sky, so all we really have is
the Doppler radial velocity vr. Assuming isotropy,

〈v2r〉 ≈ 〈v2〉
3

.

Potential energy:

EG = −
∑

i

∑

j<i

(
Gmimj

rij

)

≡ −GM
2
tot

rg

which essentially defines the gravitational radius rg. More specifically,

1

rg
=

1

M2
tot

∑

i

∑

j<i

mimj

rij
.

Although the masses & separations are coupled together inside the sum, one

often sees assumptions that they’re each sampled from independent
distributions.
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In other words, we can note that

∑

i

∑

j<i

mimj ≈ N(N − 1)

2
〈m2〉 ≈ N2〈m2〉

2
≈ M2

tot

2
(for N ≫ 1),

and we can estimate

EG ≈ −G
[
∑

i

∑

j<i

mimj

]〈
1

r

〉

≈ −1

2
GM2

tot

〈
1

r

〉

, where

〈
1

r

〉

=

∑

i

∑

j<i(1/rij)
∑

i

∑

j<i(1)
≈ 2

N2

∑

i

∑

j<i

(
1

rij

)

.

Thus, the time-steady virial theorem is

2EK = −EG =⇒ Mtot〈v2〉 =
GM2

tot

2

〈
1

r

〉

i.e., the virial mass estimator

Mtot =
2〈v2〉
G

〈
1

r

〉−1

.

Practially, though, we observe 〈v2r〉 ≈ 〈v2〉/3, and we only see projected

separations on the sky. Thus, we can only really measure
〈

1

r⊥

〉

≈ 2

N2

∑

i

∑

j<i

(
1

r⊥ij

)

.

Of course, r⊥ij < rij in general, so a statistical correction factor is applied.

Limber & Mathews (1960, ApJ, 132, 286) showed that, if the separation
vectors rij are distributed randomly in space, then

〈
1

r⊥

〉

≈ π

2

〈
1

r

〉

.

Thus, the observable virial mass estimator is

Mtot =
3π〈v2r〉
G

〈
1

r⊥

〉−1

.
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There have also been several decades of improvements to this technique;
see, e.g., Bahcall & Tremaine (1981, ApJ, 244, 805), and Watkins et al. (2010,
MNRAS, 406, 264). Sometimes it just takes careful tweaks in how one uses the

data to properly extract quantities like 〈v2〉.

Note also that many galaxy clusters are “unrelaxed” (i.e., still evolving, so not

in time-steady virial equilibrium)! Their actual mass tends to be lower than
the virial estimate.

There are other ways to estimate virial masses.

For galaxies & clusters too dense to count individual components, many
models show that if you can measure the half-mass radius rh (where the

enclosed mass is half the total), then for most realistic Φ(R, z) models,

rh
rg

≈ 0.4 → 0.52 (a relatively narrow range!)

and thus,

Mtot ≈ 2.2 〈v2〉 rh
G

.

rh often has been taken to be ≈ the
half-light radius (i.e., the point at which

integrated intensity drops to half its peak
value), but that ignores dark matter.

Of course, Zwicky (1933, 1937) is most

famous for concluding that Mtot must ≫
mass from luminous matter in clusters,

by factors of >100, thus requiring copious
amounts of “dunkle Materie” (dark matter).

For more about how Zwicky may have
also ruled out MOND-type theories, see

arXiv:1610.01543

However, there’s a good case to be made that Knut Lundmark assembled all
necessary pieces of the “dunkle Materie” story in 1930, prior to Zwicky. But

this contribution was forgotten until 2015!?
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