
Next part of course: CLASSICAL DYNAMICS

Gravity is important to all fields of astronomy & astrophysics.

Gravitational “celestial mechanics” is applicable over ∼20 orders of magnitude

in size scale: from comets (1 km) to galaxy superclusters (100 Mpc)!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We’ll start with a review of Newtonian motion of a single particle, then apply
it to mutual gravitation of multiple bodies:

• Lecture 08: The two-body problem (N = 2) of Keplerian orbits,

• Lecture 09: The three-body problem (N = 3) of Roche lobes, tides, etc.,

• Lecture 10: N ≫ 1 systems like galaxies, extending our earlier studies of
statistical mechanics, collisions, and even similar applications of the
Boltzmann equation...

Even without collisions, the N ≫ 1 body problem is non-trivial; i.e., what is

the motion of a “test particle” in a smooth gravitational potential Φ(r) caused
by millions of other particles?
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Newtonian Physics leads to Conservation Laws

First, we can start with Newton’s laws as “axioms” and review how some basic
conservation laws arise as a natural consequence.

THEN we’ll derive them using even more fundamental principles
(Euler-Lagrange theory).

Kepler’s law’s of planetary motion can be derived from either Newton OR from
Euler-Lagrange... but the latter is more generalizable to more complex systems.

There is also the unofficial fourth law: Newton’s universal law of gravitation.
The force on particle 1, due to particle 2 is written in vector form as

F12 = − Gm1m2

|r1 − r2|3
(r1 − r2)

where vectors ri point to the locations of particles i = 1, 2, and |r1 − r2| is the
scalar distance between the two particles (which we often just call r).

Let’s now derive conservation laws for the two-body problem...

The usual first one is conservation of mass. In our situation, it’s trivially

satisfied:

d

dt
(m1 + m2) = 0 i.e., m1 +m2 = constant.

Even if we extend it to allow for one body to “donate” some of its own mass to
the other, this still works.
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Next is conservation of momentum. For particle i, the classical definition
of momentum is pi = mivi, and it’s clear that Newton’s 2nd law is more
simply described in terms of it:

Fi = mi ai = mi
dvi

dt
=

dpi

dt
.

For our two-body system, how does the total momentum (ptot = p1 + p2)

change in time?

dptot

dt
=

d

dt
(p1 + p2) = F12 + F21 = 0

where Newton’s 3rd law is embedded in the form of the universal law of

gravitation: i.e., the force on 1 (due to 2) is equal & opposite to the force
on 2 (due to 1).

Thus, ptot is constant over time, and total momentum is conserved.

Notes about this:

• I’ll probably use Fi and Fij interchangeably for the force on particle i

(due to j).

• Conservation of total momentum is true for N -body systems, too. For
every particle i being tugged on by j, there’s also the equal and opposite

force on j by i... in the big sum, all pairs of forces cancel out!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Next is conservation of angular momentum. This is another vector

quantity that’s defined as
Li = ri × pi

and it’s important to note that because Li depends on ri, it is always defined

relative to a specific choice of origin.

For a single particle, how does it change in time?

dLi

dt
=

(

ri ×
dpi

dt

)

+

(
dri
dt

× pi

)

= (ri × Fi) + (vi × pi) = ri × Fi .

Because v is parallel to p, the second cross product is zero.

The quantity ri × Fi is called the torque on particle i.
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For our 2-body system,

dLtot

dt
= (r1 × F12) + (r2 × F21) = (r1 × F12) − (r2 × F12)

= (r1 − r2) × F12 .

However, the vector r1 − r2 points along a line joining the two particles.
So does F12! Thus, this is a cross product of two parallel vectors, and

dLtot

dt
= 0 i.e., Ltot = constant over time

and the total angular momentum is conserved.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lastly, we’ll examine conservation of total energy.

For a single particle, we begin by defining its kinetic energy (a scalar):

Ki =
1

2
miv

2
i =

p2i
2mi

where we use the shorthand v2i = |vi|2 = (vi · vi), and so on.

How does it change in time? Let’s use the product rule...

dKi

dt
=

mi

2

d

dt
(vi · vi) =

mi

2

[

2

(
dvi

dt
· vi

)]

=
dpi

dt
· vi = Fi · vi = Fi ·

dri
dt

.

Mathematicians hate when we do this, but let’s write this relationship as

dKi = Fi · dri .

Over time, consider that particle i moves from position a to position b along a

given path. If we integrate along the path,

Ki(b)−Ki(a) =

∫ b

a

Fi · dri = Wab

where we define the integral as Wab, the total work done by the force on the
particle over the path from a to b.
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The above is called the work-energy theorem, and it’s essentially Newton’s
2nd law, but expressed in “energy language.” A force exerted on a particle
gives it an acceleration =⇒ work done on a particle gives it kinetic energy.

Work is a scalar, but it has a sign: W > 0 means net work was done ON the
particle, so the kinetic energy at the end of the path is higher than at the

beginning. If W < 0, it means work was done BY the particle ON the
environment, so its kinetic energy must decrease.

(Notice that work is done only when there’s a nonzero component of the force
projected parallel to the particle’s path. If F is perpendicular to the path, you
can change a particle’s direction, but no work is done... so you don’t change

the particle’s kinetic energy!)

By itself, the work-energy theorem is NOT conservation of energy.

A system’s total Ki can change over time!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The above was true for any kind of force. However, what comes next is true for
only some forces...

Gravity is a “conservative” force, which means that Wab is the same, no matter
what path is chosen between a and b. (One can think about non-conservative
forces, like friction...)

In this case, we can take point a to be any arbitrary r, and take point b → ∞
(i.e., very far away from any neighboring bodies), so that the force of gravity

on particle i there is zero.

Then, we define the particle’s potential energy function such that

Ui(r) = Wr∞ =

∫ ∞

r

Fi · dr′i

i.e., the potential energy at r = the work done by a conservative force to bring

the particle from r to ∞.

Because conservative forces are path-independent, then

(Wab +Wb∞) ought to always be equal to Wa∞ .

Thus,
Wab = Wa∞ −Wb∞ = Ui(a)− Ui(b)
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and, for the above finite path (a → b), the work done by a conservative force is
equal to minus the change in potential energy associated with that force.

So, if

Ki(b)−Ki(a) = Ui(a)− Ui(b) , then Ki(a) + Ui(a) = Ki(b) + Ui(b)

i.e., conservation of total (kinetic + potential) energy for the particle.

What is the total energy of our two-body system? We can see that

E =

2∑

i=1

(Ki + Ui) = constant over time.

Each particle has its own kinetic energy Ki, so their total is just a simple sum.

When we work out the sum over the Ui terms, something interesting happens:

Utot =

∫ ∞

r

(F12 · dr1 + F21 · dr2)

=

∫ ∞

r

F12 · (dr1 − dr2) =

∫ ∞

r

F12 · d(r1 − r2) .

If we use the shorthand r = r1 − r2, then

F12 = −Gm1m2r

|r|3 so Utot = −Gm1m2

∫ ∞

r

r · dr
r3

and if we’re correct that the choice of path doesn’t matter, then let’s just
assume r and dr are parallel, and we integrate outwards along the

line-of-centers between the two particles:

Utot = −Gm1m2

∫ ∞

r

dr′

(r′)2
=

Gm1m2

∞ − Gm1m2

r
= −Gm1m2

r

and the two-body system has only one “mutual” potential energy term.

(An N -body system will have N(N − 1)/2 potential energy terms,
corresponding to the number of unique pairings between the bodies.)

Thus,

E =
1

2
m1|v1|2 +

1

2
m2|v2|2 − Gm1m2

r
= constant over time.
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Calculus of Variations (all of it I hope you’ll ever need!)

Now we switch gears for a bit, and re-derive some of the above bits of
fundamental physics from different “first principles.” This starts with a bit of

pure/abstract math, but you’ll soon see that the physics applications are
profound....

Consider a 3D trajectory of a particle x(t), which we examine between times
t1 ≤ t ≤ t2.

Later we’ll define a functional called the Lagrangian, which may depend on
position x(t), velocity ẋ(t), and time itself:

L [x(t), ẋ(t), t] (leave it general for now) .

Let’s also define the path integral: I ≡
∫ t2

t1

dt L [x(t), ẋ(t), t] .

With L and x specified, I is just a scalar number that we can compute.

Let’s see what happens if we find the one (unique?) trajectory x(t) that causes

the value of I to be a local extremum (i.e., either minimum or maximum)
compared to all neighboring trajectories. This turns out to be the path the

particle actually takes.

Binney & Tremaine (§B.7) derive this one way; I’ll follow Marion’s Classical
Dynamics book. Start by assuming we know the “extremum path” x0(t).

We parameterize a given set of

“neighbor trajectories” as

x(t) = x0(t) + αx1(t)

and we fix the endpoints at t1 & t2,

x1(t1) = x1(t2) = 0 .

(We could “fill the space” around x0(t) by specifying any number of unique x1

perturbations, but let’s just look at one at a time.)

Anyway, we’d like to know how to specify the constraint that I(α) must have

an extremum at α = 0.
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In other words, if x0 truly is the extremum path, then
(
∂I

∂α

)

α=0

= 0 for this particular choice of x1

...and then later for all possible x1’s.

Our goal is now to figure out what conditions need to hold, in order for the
above extremum condition to be TRUE.

This will put constraints on how L evolves in space & time.

We evaluate the α derivative by noting that the integration limits are fixed,

so ∂/∂α affects only the integrand. Use chain rule:

∂I

∂α
=

∫ t2

t1

dt

[
∂L
∂x

· ∂x
∂α

+
∂L
∂ẋ

· ∂ẋ
∂α

+
∂L
∂t

∂t

∂α

]

and we know

∂x

∂α
= x1

∂ẋ

∂α
=

∂

∂α

(
dx

dt

)

=
d

dt

(
∂x

∂α

)

= ẋ1

∂t

∂α
= 0

where the last one can be seen by realizing that the α parameter is really just

a function of space, not time.

Thus,
∂I

∂α
=

∫ t2

t1

dt

[

x1 ·
∂L
∂x

+ ẋ1 ·
∂L
∂ẋ

]

.

The 2nd term can be integrated by parts. Look at one Cartesian component at
a time: ∫ t2

t1

dt
∂L
∂ẋ

dx1

dt
=

[
∂L
∂ẋ

x1

]t2

t1

−
∫ t2

t1

dt
d

dt

(
∂L
∂ẋ

)

x1

and the 1st term on RHS = 0 because x1(t1) = x1(t2) = 0. Thus,

∂I

∂α
=

∫ t2

t1

dt

{

x1 ·
[
∂L
∂x

− d

dt

(
∂L
∂ẋ

)]}

Even though α doesn’t appear explicitly, this still formally depends on it (since
x & ẋ depend on α). However, we want to evaluate (∂I/∂α)α=0 = 0.
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Also, we can realize that when we write x, we’re really referring to the
“central” trajectory x0.

Since x1 is a completely arbitrary perturbation, we see the only way to make

(
∂I

∂α

)

α=0

= 0 is to require
∂L
∂x

= ∇L =
d

dt

(
∂L
∂ẋ

)

everywhere along the trajectory. This is the Euler–Lagrange (E–L) eqn.

To sum up, it’s the condition that must hold true if we are on that one unique

trajectory that minimizes I.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Historically, many people realized that Nature seems to always want to
minimize the “action” (i.e., time-integrated energy along a path) in a system.

Hero of Alexandria (∼50 AD) −→
Fermat, Leibniz, Euler, Maupertuis, Lagrange (1700s) −→
Hamilton, who unified classical dynamics (quote from Marion):

...and you know that Feynman took it even further, into quantum mechanics.

(FYI: In all cases we’ll encounter, the “extrema” are all minima.)

The relevant functional L is called the Lagrangian of the particle:

L(x, ẋ) ≡ K(ẋ) − U(x, ẋ)

where the kinetic energy K depends only on ẋ (velocity).
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We’ll tend to encounter conservative force fields, for which the potential
energy U is a function only of position x.

Consider a force derivable from a potential energy: F = −∇U .

What does the E–L equation imply?

L = K − U =
1

2
m|ẋ|2 − U(x) so

∂L
∂x

= −∇U = F

and also,

K =
m

2

(
ẋ2 + ẏ2 + ż2

) ∂K

∂ẋ
= mẋ , etc., so

∂L
∂ẋ

= mẋ .

Thus,
∂L
∂x

=
d

dt

(
∂L
∂ẋ

)

=⇒ −∇U = mẍ
F = ma !

Newton’s 2nd law is derivable from Hamilton’s principle.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Advantages of Lagrangian dynamics:

• L is a scalar, whereas forces & momenta (in the traditional “equation of

motion”) are vectors.

• Sometimes it’s difficult to specify the full list of forces acting on a body
(including nebulous “forces of constraint”). Not needed here!

• This works even for non-Cartesian coordinates & non-inertial frames.
In fact, for an N -dimensional system, if you can uniquely define some
other set of generalized coordinates,

qi = qi(x1, x2, . . . , xN)
q̇i = q̇i(x1, x2, . . . , xN ; ẋ1, ẋ2, . . . , ẋN)

}

i = 1, 2, . . . , N

then you can go through the chain rule to show that

∂L
∂q

=
d

dt

(
∂L
∂q̇

)

is valid for each coordinate, too,

even if the q’s do NOT all have units of length!

Thus, the E–L equation is the same in all coordinate systems.
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Aside: There’s neat symmetry if we also define a generalized momentum,

p =
∂L
∂q̇

(which can be verified from the full expression for K)

so that the E–L equation can be written as: ṗ =
∂L
∂q

.

Soon, we’ll look at 2 examples of generalized coordinates:

• spherical coordinates (r, θ, φ) for relative motions between two bodies,

• rotating-frame coordinates, which let us derive the centrifugal & Coriolis
forces from the E–L equation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First, though, there are several important general principles we can PROVE as
consequences of symmetry. (≡ Noether’s theorem)

(1) Energy conservation: Consider a closed system, for which

∂

∂t
L(x, ẋ, t) = 0 i.e., L doesn’t depend explicitly on absolute time t .

The total derivative with respect to time can be written

dL
dt

= ẋ · ∂L
∂x

+ ẍ · ∂L
∂ẋ

= ẋ · d

dt

(
∂L
∂ẋ

)

︸ ︷︷ ︸

from E–L

+ ẍ ·
(
∂L
∂ẋ

)
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Thus, from the chain rule,

dL
dt

=
d

dt

(

ẋ · ∂L
∂ẋ

)

which can be rearranged to
d

dt

(

ẋ · ∂L
∂ẋ

− L
)

= 0

and the quantity in parentheses is a constant. Call it the Hamiltonian:

H ≡ ẋ · ∂L
∂ẋ

− L = constant .

However, if we think back to the definition of the Lagrangian (L = K − U),

and assume U = U(x), we see that

ẋ · ∂L
∂ẋ

= m|ẋ|2 = 2K , so H = 2K − (K − U) = K + U

i.e., total energy is conserved as a consequence of time invariance.

(2) Momentum conservation: A closed system ought to also be invariant

to absolute translations (of the entire system) in space;

i.e., L should remain fixed if we replace x −→ x+ δx,
where δx is a fixed (small?) displacement.

With that, L should −→ L+ δL, via Taylor expansion,

δL =
∂L
∂x

· δx +
∂L
∂ẋ

· δẋ

However, if the displacement is fixed, δẋ =
d

dt
(δx) = 0 ,

and we want to also specify δL = 0 . Thus,

∂L
∂x

· δx = 0 , so for arbitrary δx,
∂L
∂x

= 0 .

From the E–L equation, this means

d

dt

(
∂L
∂ẋ

)

= 0 , so
∂L
∂ẋ

= constant .
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Lastly, we know
∂L
∂ẋ

= mẋ = p

so linear momentum is conserved as a consequence of spatial

(translational) invariance.

Very similarly, we could also show that angular momentum is conserved

as a consequence of rotational invariance, i.e., that

L = r× p = constant

for a closed system like this.

The upshot of these results: whereever you choose to define the origin (in
space or in time), all physical laws should remain the same.
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Central Force Motion: The N-Body Problem

Much of the rest of the dynamics part of the course will involve N bodies
moving around & being gravitationally influenced by one another.

For point masses, we can write the Lagrangian L = K − U . For the full
N -body system,

L =
N∑

i=1

(
1

2
mi|ṙi|2

)

−
∑

pairs

(

−Gmimj

|ri − rj|

)

Note that K is a sum over all N bodies, and U is a sum over all
N(N − 1)/2 unique pairs.

Now let’s set N = 2 and focus back onto the two-body problem.

We’ve already thought about this a bit (Coulomb collisions).

Gravity is similar enough to the electrostatic force, that it simplifies things to

go into barycentric, or center-of-mass (CM) coordinates:

Recall: R =
m1r1 +m2r2
m1 +m2

r = r1 − r2

Here, let’s take advantage of the fact that U = Ṙ doesn’t change when two

particles interact with one another.

Going fully into the CM frame (in which we set R = constant ≡ 0),

m1r1 +m2r2 = 0 =⇒ r1 = +

(
m2

m1 +m2

)

r , r2 = −
(

m1

m1 +m2

)

r .

One can show that

m1r
2
1 + m2r

2
2 = mr2 where the reduced mass is m = m12 =

m1m2

m1 +m2

.

With this, kinetic energy can be simplified. For N = 2, the usual Lagrangian

has 2 terms for K and 1 term for U , but in the CM frame,

L =

{
1

2
m1|ṙ1|2 +

1

2
m2|ṙ2|2

}

− U(r) =
1

2
m|ṙ|2 − U(r)

and this reduces the 2-body problem to an equivalent 1-body problem.
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Once we know the solution of r(t) for a “particle” of mass m, we can convert
back to r1(t) & r2(t) for the real particles.

We do know more about the form of U(r), but let’s hold off writing it down.

For now, note that it’s only a function of r = |r2|1/2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What can we learn about this equivalent 1-body system? We can take
advantage of the fact it’s a “closed system” to use Noether’s conservation laws

defined above:

(1) Linear momentum: The system’s total p = m1ṙ1 +m2ṙ2 ∝ Ṙ
is constant (and = 0 in the CM frame), so its conservation isn’t very

interesting.

(2) Angular momentum: We know that the system’s total

L =
∑

i

ri × pi = constant.

For the two-body problem, it’s possible to write this in the CM frame as

L = r1 ×m1v1 + r2 ×m2v2 = ❀ ❀ = mr× v .

However, if we remember that L is constant in time (i.e., always pointing in
the same fixed direction), then this means r and v must always stay in the

same 2D plane perpendicular to L.

(I think we knew this already, intuitively, from Coulomb collisions...)

Thus, we can write everything in 2D polar coordinates (r, θ):

L =
1

2
mv2 − U(r) =

1

2
m
(

ṙ2 + r2θ̇2
)

− U(r)

where r & θ are our generalized coordinates (q1 & q2).

What does the E–L equation tell us for the θ coordinate?

∂L
∂θ

=
d

dt

(
∂L
∂θ̇

)

= 0

The LHS = 0 because L doesn’t depend explicitly on θ.
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This means θ is an “ignorable coordinate,” and

∂L
∂θ̇

= mr2θ̇ = constant ≡ ℓ

which is essentially the magnitude of the system’s total angular momentum.

(3) Energy: This is assured for a closed system like this, so

E = K + U =
1

2
mṙ2 +

ℓ2

2mr2
+ U(r) = constant .

Thus, we have two constants of motion: E and ℓ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We haven’t integrated any equations of motion yet, but we now know enough

to derive Kepler’s 2nd law (i.e., equal areas in equal times).

Strangely, it’s more fundamental than the 1st, in that it doesn’t depend

on the precise functional form of U(r).

Define the area A swept out by the position vector r of the particle’s path (in

the CM frame) between time t and t+ dt :

For very short times, r(t) ≈ r(t+ dt), so the triangle has area

dA =
1

2
r(r dθ) =

1

2
r2dθ . (assuming dθ ≪ 1)

Thus,
dA

dt
=

1

2
r2
dθ

dt
=

1

2
r2θ̇ =

ℓ

2m
= constant .

and this is Kepler’s 2nd law: planets sweep out “equal areas over equal times.”

Interestingly, it doesn’t depend on the orbits being of any particular shape, or

even on U(r) having any particular form.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Actual Equations of Motion for the Two-Body Problem

Our goal is a complete solution: r(t), i.e., r(t) and θ(t). In general, that is not
trivial, but we can bite off some pieces...

There are several ways to proceed. Right now, let’s just look at the
consequences of energy conservation.

Solve E = constant for ṙ and we get a differential equation:

ṙ =
dr

dt
=

√

2

m

[

E − U(r)− ℓ2

2mr2

]

=

√

2

m

[

E − V (r)
]

where one often sees the effective potential

V (r) = U(r) +
ℓ2

2mr2

as the sum of U(r) and a centrifugal potential (corresponding to what some

call a “fictitious force”). Once we settle on a form for U(r), we’ll plot it.

Assuming we know the constants E & ℓ and the form of U(r), we could:

• Solve for dt & integrate to get t(r)

i.e.,
dr

dt
= f(r) ❀

∫
dr

f(r)
=

∫

dt = t .

• Invert the solution to get r(t).

• Integrate the definition of ℓ to get θ(t).

In general, this needs to be done numerically, so we’ll put a pin in this

approach for now.

HERE’s where we now start thinking about specific forms for U(r).

Note that only for some forms of U(r) do there exist “closed” orbits – i.e.,
paths for which r(t) returns to its original value exactly when one loops around

a full 2π radians in θ.
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Bertrand (1873) proved that there exist only two forms for which ALL orbits
are closed:

U(r) = −γ

r
(gravity) or U(r) = 1

2
kr2 (simple harmonic oscillator)

How can we learn more? A useful alternate approach – which will help us learn

about the range of possible geometric shapes for orbital paths – is to use the
E–L equation for the r coordinate:

∂L
∂r

=
d

dt

(
∂L
∂ṙ

)

mrθ̇2 − ∂U

∂r
=

d

dt
(mṙ) = mr̈

Or, after some rearranging,

m
(

r̈ − rθ̇2
)

= −∂U

∂r
≡ F (r) (RHS: the “force law”) .

We could simplify this by using ℓ = mr2θ̇ and g = F/m, to get

r̈ = g(r) +
ℓ2

m2r3
1D equation of motion; integrate twice to get t(r).

However, there is a popular change of variables (u = 1/r) that lets us write
this as a simpler 2nd order ODE for the orbit shape u(θ).

Using:
du

dθ
=

du

dr

dr

dθ
= − 1

r2
dr

dθ
= − ṙ

r2 θ̇
= −mṙ

ℓ
(with ℓ = mr2θ̇)

and so on for d2u/dθ2, we eventually eliminate time, to get

d2u

dθ2
+ u = − m

ℓ2u2
F (u) Binet’s equation .
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Binet’s equation can be used in two ways:

• If we know F , solve the differential equation for the orbit, u(θ).

• If we know the orbit, easily solve for F (i.e., for any unknown forces acting
on the particles).

Doing the former is straightforward if we (finally!) specify a classical

gravitational potential:

U(r) = −Gm1m2

r
= −γ

r
=⇒ F (r) = − γ

r2
= −γu2

and thus the RHS of Binet’s equation is a constant.

If we perform yet another change of variables,

y = u − mγ

ℓ2
=⇒ and Binet’s equation is

d2y

dθ2
+ y = 0

whose solution is a sinusoid. In general we can write it as a sum of sines and

cosines, or as

y(θ) = y0 cos(θ − θ0) which has 2 constants of integration.

Converting back to real units, we see: r(θ) =
λ

1 + e cos(θ − θ0)

which are conic sections, with one focus at the origin (i.e., the center of

mass).

The two new constants are

λ =
ℓ2

mγ
(radius of curvatuure) e =

ℓ2 y0
mγ

(eccentricity)

Note: λ tells us the overall spatial scale of the orbit, while e tells us more
about its shape. θ0 sets the overall orientation of the orbit.
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If we took this solution, substituted into energy conservation,

E =
1

2
mṙ2 +

ℓ2

2mr2
− γ

r

(

using ṙ =
dr

dθ
θ̇

)

we’d be able to solve for e as a function of total energy:

e =

√

1 +
2Eℓ2

mγ2
=

√

1 +
2λE

γ
(a nicer way to write e)

What do the orbits look like... and how does E compare to V (r) ?

e > 1 E > 0 hyperbola (v > 0 as r → ∞)
e = 1 E = 0 parabola (v = 0 as r → ∞)

0 < e < 1 Vmin < E < 0 ellipse
e = 0 E = Vmin circle (r = λ)

e < 0 E < Vmin not allowed (ṙ2 < 0, imaginary velocity!)

where some additional algebra can be used to show that

rmin =
λ

1 + e
rmax =

λ

1− e
Vmin = −mγ2

2ℓ2
= − γ

2λ
.

Note that the plot for V (r) is only for a single value of ℓ. There’s really a whole

family of V (r, ℓ) for all possible orbits between 2 bodies of known masses.
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Kepler himself thought a lot about the elliptical case (1st law).

a =
γ

2|E| = semi-major axis

b =
ℓ

√

2m|E|
= semi-minor axis

Area = πab ,
b

a
=
√

1− e2 , λ =
b2

a

The orbit around one focus ranges between the apsides:
{

periapsis / pericenter / perigee

apapsis / apocenter / apogee

}
rmin = a(1− e) = λ/(1 + e)

rmax = a(1 + e) = λ/(1− e)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A gallery of elliptical orbits by Adrian Price-Whelan (adrianprw), varying
both e & mass ratio q = m2/m1, converted back to the inertial frame:
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We can also derive Kepler’s 3rd law by recalling the 2nd law:

dt =
2m

ℓ
dA (for an ellipse).

Both sides can be integrated over an exact period:

{
t = 0 → P
A = 0 → πab

Thus, P =
2m

ℓ
πab =

2m

ℓ
πa3/2

√
λ =

2m

ℓ
πa3/2

√

ℓ2

mγ
.

Kepler squared both sides. The ℓ’s cancel, and we see that

P2 =

(
4π2m

γ

)

a3

which isn’t quite Kepler’s 3rd law (i.e., the square of a planet’s period is

proportional to the cube of its semimajor axis), because the term in
parentheses isn’t constant. It depends on planet mass. Writing it in full:

P2 =

(
4π2

✘
✘

✘
✘m1m2

(m1 +m2)G✘
✘
✘
✘m1m2

)

a3

and for the solar system, Mtot = (m1 +m2) = M⊙ +mplanet ≈ M⊙.

The 3rd law is only approximately true, but it’s pretty close.

For circular orbits, r = a, and astronomers tend to write it as

Ω =
2π

P =

√

GMtot

r3
∝ r−3/2 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We haven’t quite solved the full Kepler problem completely, since we still don’t

know the detailed time dependence r(t) & θ(t) in closed form.
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We could have integrated Kepler’s 2nd law to get t(θ) for times less than P .
Noting the proportionality,

t

P =
A(θ)

πab
=

1

πab

∫ θ

0

1
2
r2dθ′ =

λ2

2πab

∫ θ

0

dθ′

(1 + e cos θ′)2

(taking θ0 = 0). For an ellipse, it’s analytically integrable, but complicated:

2πt

P = 2 tan−1

(√

1− e

1 + e
tan

θ

2

)

− e
√
1− e2 sin θ

1 + e cos θ
.

We’ll consider that knowing t(θ) is equivalent to knowing θ(t), since it’s a
single-valued function that can be tabulated numerically and “inverted” via

lookup-table interpolation.

However, from the 1700s to the 1900s, a HUGE amount of effort was spent to

invert it analytically. I won’t go into Kepler’s equation (which depends on
θ-like quantitites called the “mean anomaly” & “eccentric anomaly”) and is
still a key component of celestial mechanics classes.

Most recently: Philcox et al. (arXiv:2103.15829) did find an exact solution
for elliptical orbits... if you’re comfortable with complex contour integrals.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

There’s a family of interesting physics problems involving making changes to

an elliptical (or circular) orbit.

Two ways to do it:

{
(a) impulsive “∆v”
(b) gradual gas drag

}

(E can go ↑ or ↓).

To make any progress working out the numbers, we need to examine some
additional consequences of energy conservation:

E =
1

2
mv2 − γ

r
=⇒ v2 = |ṙ|2 =

γ

m

(
2

r
+

2E

γ

)

Using the expressions derived for ellipses, this reduces to

v2 =
γ

m

(
2

r
− 1

a

)

= GMtot

(
2

r
− 1

a

)

the “vis–viva” equation
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Its history is... interesting... but its usefulness for determining the speed at

any point along an elliptical orbit is also clear.

In some ways, it’s yet another way of thinking about Kepler’s 2nd law. The

closer in you go, the faster the orbit becomes.

Applications:

(a) If you’re in one circular or elliptical orbit, and you’d like to get to a

different one, there are multiple ways you can fire your rockets to do it.

The most efficient way is the Hohmann transfer orbit, which lets you do it

with the minimum thrust.

What do we mean by “thrust?” A given rocket burns with essentially a known

& constant force F . If you burn it for a time ∆t, then turn it off, you’ve
changed your velocity by a given amount:

F =
∆p

∆t
=

mR∆v

∆t
=⇒ ∆v =

F ∆t

mR

where mR is the current mass of the rocket. To accelerate, you point the rocket

behind your current velocity vector v. To decelerate, you point the rocket along
v.

So how do you choose the ∆v that will get you to your new orbit? Vis-viva!

Let’s say we’re in a “low” circular orbit around the Earth with radius r1.

We want to get to a higher circular orbit with r2 > r1.
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There must be two rocket burns:

1. Boost from the low circular orbit
to an elliptical orbit with the same

perigee (r1), and an apogee of r2.

2. Once you reach the apogee of r2,

boost again to change the orbit from
elliptical to circular.

To determine the required ∆v for
each step, just solve the vis–viva

equation for the speeds...

The first burn:
∆v1 = v(ellip. at r1)− v(circ. at r1)

and it’s straightforward to use vis-viva to evaluate

v(circ. at r1) =

√

GMtot

r1
.

The other term requires us to recognize that 2a = r1 + r2, so that

v(ellip. at r1) =

√

GMtot

(
2

r1
− 2

r1 + r2

)

=

√

2GMtot r2
r1 (r1 + r2)

and thus

∆v1 = v(ellip. at r1)− v(circ. at r1) =

√

GMtot

r1

[√
2r2

r1 + r2
− 1

]

> 0 .

Similar math could be done for the second burn (which would also have
∆v2 > 0), but we won’t go through it.

It’s time to point out something strange about Keplerian orbits. Notice that

we had to speed up (twice!) to get from the r1 circular orbit to the r2 circular
orbit. However, the orbital speed is slower at r2. Recall the orbital frequency:

θ̇ = ω =

√

GM

r3
=⇒ vcirc = ωr =

√

GM

r

and as r goes up, vcirc goes down.
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However, a circular orbit with larger r has a larger angular momentum

ℓ = mr2θ̇ = mr2
√

GM

r3
= m

√
GMr

and a larger (i.e., less negative) total energy

E = Vmin = −Gm1m2

2r
(recalling that for a circular orbit, r = λ)

so as r increases, both ℓ and E increase, too.

It’s counter-intuitive, but it’s how the physics works. If you’re in orbit around
the Earth at a given radial distance, and you wanted to “pass” a satellite in a
neighboring orbit (i.e., blow by it at a higher speed), you’d have to:

• Fire your rockets in a forward direction, to slow down.

• This decreases your ℓ and E and drop you into a lower orbit,

• in which you’ll have a faster orbital speed!

Maybe a plot will be helpful. For circular orbits at various r,

By going to a lower radius, you end up speeding up (higher K), but you’ve lost

total energy (i.e., E is lower = more negative). The only way to do that is to
do “negative work.”

Want to build more intuition? Play Kerbal Space Program?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(b) A spacecraft orbiting in a gas atmosphere will undergo gas drag (i.e.,
“aerobraking” when intentional!) which causes “total” energy E to decrease.

The frictional force on an object moving with speed v through a gas with

density ρ is given by Rayleigh’s drag equation,

Fdrag = 1
2
CDρv

2A

where CD is an order-unity drag coefficient, and A is the cross-sectional area of

the object.

(Theoretically, this should be derivable from Ψvisc in the non-ideal fluid

conservation equations... but in practice it was found via dimensional analysis
& verified experimentally.)

You may have used Fdrag = mg to solve for the terminal speed of a falling
object due to “air resistance.”

The corresponding loss of kinetic energy is

v ·
{

m
dv

dt
= −Fdrag

}

=⇒ dE

dt
= −CDρv

3A

An initially circular orbit will slowly decay. The drag is exerted ∼constantly
around the orbit, and

E = Vmin = −GMtot

2r
=⇒ r = −GMtot

2E
=

GMtot

2|E|
and decay makes E more negative. |E| ↑, so r ↓.

An initially elliptical orbit (around a body with an atmosphere) will

circularize, then decay. The strongest drag is at pericenter, because:

• ρ drops off exponentially with r

• v is highest at smallest r (vis–viva).

This is like an inverse Hohmann ∆v (i.e., pointing rockets in the opposite
direction of the orbit), and the lower E will result in the “next” orbit being a

lower-e ellipse with the same r1.

Circularization is important in close binary star systems, too.
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For satellites, though, there’s great practical interest in this problem, because
it’s a confluence of money (how long will my valuable satellite live?) and risk
(when & where will it crash?).

Also, ρ in Earth’s upper atmosphere depends on solar activity, so
space weather prediction is needed to model the long-term effects.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Another interesting application of gas drag: planetary migration.

“Hot Jupiter” exoplanets were discovered in 1995, but their formation is a
puzzle. It’s easy to form gas giants outside the “snow line” (∼3 AU for the
Sun, where it’s cold enough for dust grains to condense), but these planets are

well inside it.

Maybe they formed at large distances, then migrated inwards. How?

• Large-angle scattering in close encounters? (rare)

• Viscous drag with disk gas (preferred model?)

As the planet plows through the disk, it experiences drag with neighboring
parcels of gas. Friction “wants” to make it all rigid (constant Ω), so

Coupling with

{
inner, higher-Ω

outer, lower-Ω

}

gas

{
speeds up

slows down

}

the planet.

Which wins? Depends on disk ρ(r, φ): more gas → more friction.

Low-mass planets: the latter tends to win. Planets tend to lose L (and/or E)
& migrate inwards.
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High-mass: the planet’s gravity clears out a gap in the disk, so it feels ∼no
local drag force. But it’s an accretion disk, so everything gets brought in ⇒
planet tends to migrate inwards.

How fast does it occur? Assume a diffusion timescale: tmig ∼ R2

ν

where the viscosity can be given by Shakura & Sunayev’s α model...

ν ∼ αH2Ω H = disk vertical scale height, α ∼ 0.01.

Thus, tmig ∼ 1

α

(
R

H

)2
√

R3

GM∗

and for H/R ∼ 0.1, M∗ ∼ M⊙, and R = 1–5 AU, we get tmig ∼ 103–104 years.

This is much shorter than disk lifetimes of ∼106 years.

What stops the migration (i.e., prevents it from colliding with star)?

• Disk is truncated by star’s strong magnetic field?

• Tidal interactions with star, once it comes very close?

• If planet formed “late,” disk may dissipate before migration done?

• Other planets may have paved the way; ate up disk gas?

Maybe “super-earths” are failed hot Jupiters, whose migration was halted?

Beyond circular and elliptical orbits

Many other applications in astrophysics depend on the special case of
parabolic (E = 0) orbits: e.g.,

• star formation (infall accretion of mass from large distances)

• “single apparation” comets coming in from the Oort cloud

• the lowest-energy way to do spacecraft orbit insertion (“capture orbit”).
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Consider the accretion problem inside a Giant Molecular Cloud (GMC) in the
disk of our galaxy. They become turbulent and break into protostellar “cores”
that will eventually collapse into stars. Typical properties:

Rcore ≈ 0.1 parsec
M ≈ 1 solar mass

ω ≈ 10−15 rad/s

Rotation is slow; it only gets a gentle kick from galactic shear motions:

P = 2π/ω = 200 million years. vcirc = ωRcore = 0.003 km/s.

Let’s assume there’s already a protostar forming at the center of the GMC,
which dominates the total mass M , and has a radius ≈ R⊙ ≪ Rcore.

Because of the slow rotation of the cloud, it’s a good approximation to assume
that a small clump of gas from its outer edge falls inwards on a parabolic

orbit; i.e., with E ≈ 0, and thus zero kinetic energy at its outer starting point
(essentially r → ∞).

We want to know: Will the clump impact the star?

The answer depends on how much angular momentum it has. Assume m1 ≈ M
is the star and m2 ≪ M is the clump, then the reduce mass m ≈ m2. We set

the angular momentum at the outermost “initial condition:”

ℓ = mr2θ̇ = mR2
coreω = constant.

For a parabolic orbit with e = 1,

r(θ) =
λ

1 + cos θ

and the radial distance of closest-approach to the star will occur at θ = 0, or

rmin =
λ

2
=

ℓ2

2GMm2
=

ω2R4
core

2GM

Plugging in the above numbers: rmin ≈ 490R⊙ ≈ 2.3 AU.

Thus, NO, most parcels won’t impact the star, because they’ve got too much

angular momentum and are unable to move so far in.
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Instead, many infalling parcels end up interacting with one another, usually
when they try to pass through the rotational midplane:

There are really many parcels, all coming in with random values of α between
0 and 2π.

Infall may start as random, but if there’s a net overall sense of non-radial

(rotational) flow, the north/south motions can cancel out, and the east/west
motions remain to flow in one predominant direction.

The flow flattens into an accretion disk, and our derived size of “a few AU”
is close to what is observed.

Interestingly, vis-viva says the parcels first cross the disk-plane (at θ = ±π/2)
with v2 = 2GM/λ, but they become rapidly “circularized” into a Keplerian
orbit at that distance, which has v2 = GM/λ.

Roughly ∼half of their kinetic energy went into heating up the gas in the disk!

This is a frictional/viscous effect that ultimately causes the orbiting parcels

to lose energy, and thus spiral into the star very slowly. (That’s why it’s called
an accretion disk, and not an orbiting-forever disk...)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The parabolic orbit (E ≈ 0) is always “on the edge” of either capture or

escape. It’s also possible to use gravity to make small nudges.

Let’s look at one more problem in the case of hyperbolic (E > 0) orbits.
Later we’ll look in more detail at gravitational scattering-type interactions in

N -body systems (similar to Coulomb collisions in plasmas), which are also
essentially hyperbolic.
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The Gravitational Slingshot Effect

You’re in a rocket, and you want to change your speed by some ∆v. However,
you don’t have enough fuel. What do you do...?

There’s hope. Consider a hyperbolic flyby between a spacecraft and a planet
or moon. The eccentricity determines the “opening angle” of the hyperbola:

These trajectories show the relative motions described by r & v.

There’s one interesting fact to learn about v in hyperbolic orbits. Consider the
“initial” and “final” conditions (way before & way after the closest approach).

For both conditions, r → ∞, so the potential energy Utot is essentially zero in

both places. Thus,

E =
1

2
m|v|2 − Gm1m2

r
≈ 1

2
m|v|2 = constant

so we see that |vinit| = |vfinal| in the CM frame.

However, we’re going to have to transform back into the inertial frame. Let’s
assign m1 = spacecraft, and m2 = planet. Thus, m2 ≫ m1. The velocity of the

CM frame is

V =
m1v1 +m2v2

m1 +m2

≈ v2

i.e., the planet dominates the total momentum of the system.

Rather than just jump into the CM frame, we should be aware that the planet
is in orbit around its star, too. Thus, over short time intervals, we can consider

v2 ≈ V to be a known planetary orbital velocity.
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Anyway, we see that
v = v1 − v2 ≈ v1 −V

i.e., the relative velocity ≈ velocity of spacecraft in CM frame.

Let’s assume we’re in a low-eccentricity hyperbolic orbit, and let’s remember
that |vinit| = |vfinal|.

v1,init ≡ −W êx (let’s set W > 0)

vinit = v1,init −V = (−W − V ) êx

vfinal = −vinit = (W + V ) êx

Thus, going back to the inertial frame,

v1,final = vfinal +V = (W + 2V ) êx

i.e., the x magnitude of the spacecraft velocity changed from W to W + 2V .

If the spacecraft approaches the planet “head-on” in the planet’s orbit

(i.e., V > 0), the spacecraft speeds up after the slingshot.

• Similar to the terrestrial analogy of a tennis ball being thrown at an
approaching wall... it bounces back faster (see also “Fermi acceleration”).

If the spacecraft approaches the planet “along” the planet’s orbit (i.e., V < 0),

the slingshot slows down the spacecraft.

• This is how Parker Solar Probe is inching its way closer to the Sun... by
using Venus to shed its angular momentum.
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