
Non-Ideal Effects: Resistive MHD & “Beyond MHD”

In ideal MHD, we neglected terms in the conservation equations that have to
do with Coulomb collisions.

Earlier, we saw that the Boltzmann collision term is 6= 0 only in certain
circumstances; e.g.,

• For multiple species, (Ti 6= Tj) or (ui 6= uj) gives rise to equilibration

terms on the RHS.

• For “self-collisions” (single MHD fluid interacting with itself), the
RHS 6= 0 when f(v) is non-Maxwellian.

For now, we’ll investigate just the 2nd item in the list. But what generates

non-Maxwellian distributions?

Note: A Maxwellian means we’re in locally homogeneous equilibrium;

i.e., there’s NO net transport of “stuff” from point A to point B.

But if large-scale gradients exist in the background plasma, then collisions

MAY start acting as catalysts to transport stuff from point A to point B.

Consider something like a star, with high thermal energy U in the interior, and
low values higher up. At any one point, f(p) is mostly isotropic. If collisions

let different regions “talk to each other,” the fact that |∇U | 6= 0 produces
non-local skewness:

We’ll see that skewness occurs in tandem with an energy flux F = −D∇U .

Thus, if spatial gradients exist, collisions can:

1. transport momentum • viscosity

2. transport thermal energy • heat conduction
3. transport magnetic energy (when uion 6= ue) • electrical resistivity

Our goal is to derive how these transport coefficients (i.e., diffusion

coefficients D) depend on the Coulomb collision rate νcoll = 1/τcoll.
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First, let’s review the macroscopic definitions of the transport coefficients...
then we can derive how they are enabled by microscopic departures from a
Maxwellian f(p).

(1) Viscosity measures how collisions transport momentum... i.e., how the
system responds to shear motions.

Recall the full MHD equation of momentum conservation:

ρ
Du

Dt
+∇ · P− ρg − 1

c
J×B = 0

and it was only for a Maxwellian that the 3×3 stress tensor was given by

P =




P 0 0

0 P 0
0 0 P



 where P = nkBT and ∇ · P = ∇P .

Recall that each component of the stress tensor looks like Pij = ρ〈vivj〉.

Thus, P is the rate at which the i component of “momentum density” (ρui)
is carried in the j direction with speed (uj).

Thus, the off-diagonal terms (i 6= j) represent shear, and they are most
general & physically realistic when written as

Pij = µ

{
∂ui

∂xj
+

∂uj

∂xi

}
(for i 6= j)

µ = coefficient of shear/dynamic viscosity = ρν .
ν = µ/ρ = coefficient of kinematic viscosity... units of length2/time,
same as a diffusion coefficient. We ought to call it Dvisc?

Verify that units work out: ∇ · P =
ρν

ℓ

u

ℓ
=

ρ(uℓ)u

ℓ2
=

ρu2

ℓ
=

ρu

t
X

The traditional hydrodynamic form is

∇ · P = ∇P − ρν

[
∇2u+

1

3
∇ (∇ · u)

]
(for ν constant in space).

in which we neglect the so-called “second viscosity” ζ that is related to

compression/expansion in the i = j components (not shear).
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Maxwell showed that an ideal monatomic gas has ζ = 0, and in many
applications this isn’t a bad assumption (exception: shock thickness).

Also, for incompressible flows (∇ · u = 0), all terms related to ζ are zero, and

the normal shear viscosity simplifies, too.

In that case, with no gravity or B (also assuming pressure equilibrium &

incompressible flow), all that’s left in the momentum equation is

Du

Dt
= ν∇2u

i.e., viscosity provides diffusive momentum transport for a fluid parcel when

there are relative motions, leading ultimately to u const. in space.

How important is viscous diffusion, compared to standard fluid advection? The

standard gauge is to take the ratio of back-of-envelope magnitudes for the two
terms:

Reynolds number: Re =
momentum advection

momentum diffusion
=

|(u · ∇)u|
|ν∇2u| ∼ u2/ℓ

ν u/ℓ2
∼ u ℓ

ν

In astrophysical systems, usually Re ≫ 1, but sometimes viscosity does appear
to be important despite that! (There may exist “anomalous” sources of ν in

addition to Coulomb collisions.)

Strong turbulence is possible only when Re ≫ 1. The opposite case is

peanut butter or molasses, with Re ≪ 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(2) Heat Conduction measures how collisions transport thermal energy
through the system (again, only when it’s initally inhomogeneous).

It’s worth going back to the moments of f(p),

∫
d3p f(p)





1 (0th) number density n (scalar)
v (1st) bulk flow speed u (vector)
vv (2nd) pressure/stress P (3×3 dyadic tensor)

vvv (3rd) heat conduction Q (3×3×3 triadic tensor)

Just as we opted to often reduce 〈vv〉 to the mean thermal energy 〈v2〉,
we usually never need all 27 components of Qijk.
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It’s useful to think about a vector version of the 3rd moment heat
conduction flux:

q = n

〈
1

2
mv2 v

〉

which follows the transport of kinetic energy per particle (12mv2) in a given
direction, at a given speed (v), through the system.

Classically (going back again to Fourier in Napoleon’s army), we’ve seen

q = −κ∇T

which makes similar sense as the pressure tensor being ∝ velocity shear.

Heat wants to flow down the gradient. Here, q 6= 0 only when there are local
variations in thermal energy.

Spitzer (1962) and Braginskii (1965) found that Coulomb collisions in an

ionized plasma give κ ∝ T 5/2. We’ll derive that in a bit, but there are many
exceptions, too.

With these transport terms, the thermal energy equation is

DU

Dt
+ (U + P )∇ · u = {sum of heating – cooling terms}

= −∇ · q + Ψvisc = κ∇2T + Ψvisc

where we shouldn’t forget that viscosity results in irreversible conversion of
kinetic to thermal energy:

Ψvisc = µ

[
∆ij∆

ij − 2

3
(∇ · u)2

]
, ∆ij =

∂ui

∂xj
+

∂uj

∂xi

For the simplest orthogonal shear flow case (i.e., u pointing in the i direction,
but varying only in j direction):

Ψvisc ∼ µ

(
∂ui

∂xj

)2

(I think this holds only for i 6= j) .

This cancels out a viscous loss term in the total fluid energy conservation

equation. Remeber the terms like: u · {all terms in momentum eqn} ?
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The thermal conductivity κ is used often in astrophysics, but its units aren’t
very natural. Some prefer the thermal diffusivity DT, which is (roughly) the
diffusion coefficient that occurs when u = 0 in the energy equation:

∂T

∂t
=

5

3
DT∇2T DT =

κ

ρ c̃P
=

2κ

5n kB
(for ideal gas)

where c̃P = 5
2kB/〈m〉 is (one version of) the specific heat at constant pressure.

However, when u 6= 0, it’s not clear which of the 2 RHS terms in the energy
equation is more important. Define another ratio:

Brinkman number: Br =
|Ψvisc|
|∇ · q| ∼ µu2/ℓ2

κT/ℓ2
∼ µu2

nDT kBT
∼ ν

DT

u2

c2s

The ratio ν/DT arises frequently in hydrodynamics:

Prandtl number: Pr =
momentum diffusion

thermal diffusion
=

ν

DT

Typically, Pr ∼ 1, but it can be as small as 10−4 in stars. Thus, Br ∼ M2,

where M = u/cs is the Mach number of a flow.

Static plasmas or subsonic flows have Br ≪ 1, so conduction is much more

important that viscous heat loss.

Not to overwhelm you with dimensionless numbers, but one can also compare
to the macroscopic motions again, to get the

Péclet number: Pe =
thermal advection (enthalpy flux)

thermal diffusion (heat conduction)
=

u ℓ

DT
= Re Pr

i.e., sort of a “thermal Reynolds number,” with DT replacing ν.
In astrophysics, Pe ≫ 1 often, too.
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Of course, the higher we go in moments of f(p), the more that subtle
departures from Maxwellians can affect the transport. Recall...

∂n

∂t
= · · · RHS contains u

∂u

∂t
= · · · RHS contains P (& “external” gravity, Lorentz forces)

∂P

∂t
= · · · RHS contains q (& “external” heating/cooling rates)

∂q

∂t
= · · · (very seldom used, but results have been insightful!)

That last equation (and some even higher moment equations) becomes

important in collisionless plasmas.

For example, we’ll see later that when there’s a strong B, we have |q‖| ≫ |q⊥|.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3) Resistivity measures how collisions transport electromagnetic energy

through the system. The term “conductivity” is often used (σ = 1/η), and
it’s important to distinguish electrical conductivity from thermal conductivity.

We’ve already justified its presence in the induction equation, and discussed its

intrinsically diffusive nature:

∂B

∂t
= ∇× (u×B) + DB∇2B .

It’s relative importance is measured by the magnetic Reynolds number:

Rm =
magnetic advection

magnetic diffusion
=

|∇ × (u×B)|
|DB∇2B| ∼ u ℓ

DB

Because the “advection” of structure along B often takes place via Alfvén-like

fluctuations (and sometimes we’re dealing with magnetostatic systems with
u = 0), MHD people often define an analogous quantity, the

Lundquist number: S =
VA ℓ

DB

In astrophysics, both Rm and S are often ≫ 1 (often ∼> 1010 to 1015).
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The relative strengths of viscosity and resistivity are gauged via a

magnetic Prandtl number: Pm =
momentum diffusion

magnetic diffusion
=

ν

DB
=

Rm

Re

In turbulence, as the cascade creates structure at ever-smaller scales, eventually
dissipation takes hold. We care about what kind of dissipation occurs “first:”

viscous damping of UK

(if Pm > 1)
e.g., neutron star disks

or

resistive damping of UB

(if Pm < 1)
e.g., protoplanetary disks

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FYI, in real astrophysical systems, there usually are lots of other effects that
behave similarly enough to collisions (and are faster), that we use anomalous

transport coefficients.

Too often the details of these other processes are swept under the rug by

calling them “turbulent...”

Dturb ≡ uturbℓturb ≫ { ν , DT , DB }coll .
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Next, how do we calculate ν, κ, and η (i.e., Dvisc, DT, DB) in terms of the
micro-physics of Coulomb collisions?

Chapman-Enskog theory

Entire courses can be devoted to this (see also Braginskii 1965, Rev. Plasma
Phys., 1, 205), but for now we’ll just look at the following procedure:

• Set up Boltzmann equation with simple BGK form of the collision term.

• Impose one type of large-scale transport (i.e., a gradient in a 0th-order

quantity).

• Linearize f(v) = f0 + f1, and solve for the small/perturbed (1st-order)

part of f that responds to the gradient.

• Plug in this modified f(v) into a “higher moment” definition of a fluid
quantity that contains the desired transport coefficient.

• Solve for the transport coefficient!

In class we’ll just go through this procedure for the heat conductivity κ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Goal: verify that q =
1

2
ρ〈v2v〉 = −κ∇T and solve for κ.

If we were to plug in a Maxwellian f(v) into the above definition, we would get

q = 0. They’re integrals of odd fuctions. There’s no transport in equilibrium.

Thus, to find the non-Maxwellian f consistent with thermal energy transport,

write the BGK Boltzmann equation (with no external forces):

∂f

∂t
+ v · ∇f =

f0 − f

τ

where τ is a constant collision timescale.

Simplify with 4 assumptions:

• Linearize f = f0 + f1 (with |f1| ≪ |f0|).
• Both f0 and f1 are time-steady.

• The only spatial variation is T (z) in the Maxwellian f0.
• Work in the frame of the bulk flow (i.e., u = 0).
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The Boltzmann equation becomes vz
∂

∂z
(f0 + f1) ≈ vz

∂f0
∂z

≈ −f1
τ

.

Recall the Maxwellian f0 is a function of n, u0, and T . If T is the only

quantity that varies as a function of z, the chain rule gives

∂f0
∂z

=
∂f0
∂T

∂T

∂z
=

[
f0
T

(
v2

v2th
− 3

2

)]
∂T

∂z

(
where v2th =

2kBT

m

)

Thus, Boltzmann’s equation tells us

f1(v) = −τ vz f0
T

(
v2

v2th
− 3

2

)
∂T

∂z

and note that f1 is a cubic polynomial (in v) times f0. The total f = f0 + f1 is

skewed in the vz direction... and not necessarily positive-definite!

Thus, we can plug f into the definition of q (or at least its 1 relevant vector

component):

qz =
1

2
mn〈v2 vz〉 =

m

2

∫
d3p v2 vz (f0 + f1)

and we can ignore the f0 term because nice isotropic Maxwellians don’t
transport heat.

Algebra redacted... qz = −mτ

2

1

T

dT

dz

∫
d3v v2z

(
v4

v2th
− 3v2

2

)
f0(v)

= ❀ −mτ

2

1

T

dT

dz

(
5

2
nv4th

)

If we replace v2th by 2kBT/m, we indeed get

qz = −κ
dT

dz
where κ =

5τnk2BT

m
.

Combine this with Drude’s model for the resistivity η (or electrical

conductivity σ) and we get
κ

σ
= 5

k2BT

e2

which is also known as the Wiedemann–Franz law. For metals, the factor
of 5 is replaced by π2/3 ≈ 3.29.
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Even simpler, though, we can show that DT = τv2th = ℓmfp vth .

Of course, we then need to go back to Coulomb collision theory to specify
τ = τcoll in terms of other plasma parameters:

τcoll ∝ n−1T 3/2 =⇒ κ ∝ nT /νcoll ∝ T 5/2 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In summary, we’ve “closed the loop” that describes how transport processes

occur as a confluence of three factors:
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Magnetic Reconnection

We noted that astrophysical plasmas often have Rm ≫ 1 , which means
collisional resistivity effects shouldn’t be important.

However, sometimes magnetized plasmas get themselves twisted & braided into
complex topologies...

• coronal loops/flares/prominences above a convectively churning star

• magnetized plasma above & below an MRI-unstable accretion disk

• initially helical B in galactic jets can become tangled & chaotic

• planetary magnetospheres (2 disparate regions pressed together)

In such regions, there arise small-scale locations where uℓ/DB is no longer ≫ 1.

Thus, if we want to study what happens when oppositely-directed regions of B

are pushed together, we’re forced to take resistivity seriously.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If magnetic flux was perfectly frozen-in to the flow, the field lines would
build up in a “log-jam.”

However, we know there’s another term in the induction equation: diffusion.

Note that in the above problem, we’re looking at “steep” variations in the y

direction. Define the thickness of the “reconnection region” (in y) as δ, and
assume spatial derivatives are strongest in y. As magnetic flux piles up,

gradients get sharper, so δ gets smaller.

7.11



Replacing u by uin (fixed speed at which fields are pushed together) and ℓ by δ
(which is shrinking), we find that eventually,

Rm =
uinδ

DB
∼ 1

i.e., diffusion starts to “beat” flux freezing.

i.e., the thickness of a reconnection region is δ ∼ DB

uin

and once the region gets this thin, diffusion starts to annihilate magnetic
energy and convert it to heat.

Problem: We don’t know what sets the scale for either δ or uin .

In order to figure out what’s really going on when B starts to get destroyed, we

need to bring in more information. This step is still unsolved & controversial.

Aside: The sharp, flattened region where opposing fields meet is often called

a current sheet. Why? In MHD,

J =
c

4π
∇×B and in this geometry, Jz ∼

cBx

4π δ

because the ∂Bx/∂y term dominates. Outside the current sheet, J → 0.

Also, in the reference frame moving with the flow, E = ηJ, so

Ez ≈
η cB

4π δ
≈ DBB

c δ
i.e.,

uin

c
≈ E

B

so the faster the reconnection inflow, the more of a DC electric field is built
up in the current sheet.

Thus, once we know all the parameters, the volumetric heating rate inside
the current sheet can be computed; Qheat = J ·E = JzEz.

I’ll go over one of the earliest models of what happens when incoming field
lines are “broken” and reconnected to field lines from the opposite side.

In the 2D Sweet–Parker model (1957), the reconnection region can be
thought of as flattened & ∼rectangular...
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The large-scale length L of the system is something we already know, like ρ

(which we can assume is uniform everywhere).

If it’s steady-state, then the total mass coming in must balance the mass going
out, in proportion to the dimensions,

uin L ≈ uout δ

i.e., mass flux depends on ρuA, but the full A depends on extent in/out of the
board. That’s the same for both in & out motions.

Toothpaste tube analogy...
uout

uin
≈ L

δ
≫ 1 .

We can also make use of energy conservation, and assume that the

magnetic energy going in ≈ kinetic energy coming out the sides.

(Inside the diffusion region, it’s dominated by thermal energy, but we’re
staying “outside” for now.)

E = volume × energy density, so

Ein = ∆x∆y∆z UB Eout = ∆x∆y∆z UK

= L (uin∆t)∆z

(
B2

8π

)
= (uout∆t) δ∆z

(
1

2
ρu2

out

)

If Ein = Eout , then uout =
B√
4πρ

= VA (the Alfvén speed) .

In magnetically dominated regions (e.g., corona), β ≪ 1, and thus VA ≫ cs.
Reconnection outflow is strongly supersonic.
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Some context:

• Note that VA is showing up as a “characteristic” macroscopic/large-scale
speed of the system. It’s not just a wave phase speed.

• Really, Ein 6= Eout, since a part of Ein must go into heating up the diffusion

region! Note that a larger uin means larger Ein, so the total reconnection
heating rate must also scale with uin.

Finally, we can put together everything we know to write

uin =
uout δ

L
(from mass conservation)

=
VA (DB/uin)

L
(from energy conservation & Rm ≈ 1 in box)

Multiplying the right side by VA/VA, we can write

u2
in =

V 2
A

S
where recall that S =

VA L

DB

and S is specifically the Lundquist number for the macroscopic/large-scale

system. Thus,
uin

VA
≈ δ

L
≈ 1√

S

Unfortunately, this is extremely slow. If S ∼ 1010, then uin is ∼10−5 times the

local Alfvén speed. In the solar corona, it would take months to years to
fully “process” a flare’s worth of B via reconnection this way. However, we see
in flares that it can all happen in 5–10 minutes!

Observations (and more detailed computer simulations) show that real
reconnecting systems often find their way to the narrow range of

uin

VA
≈ 0.01 to 0.1

which is sufficiently fast and efficient to account for what we see. The details
(how the universe gets around Sweet-Parker “constraints”) are still unclear.
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Ideas include:

• The thin “current sheet” (diffusion region) can be turbulent, in which
small magnetic “islands” can form & grow along the thin interface region.
Chaotic eddies produce extra anomalous diffusion:

larger DB −→ smaller effective S −→ faster uin !

• Maybe the reconnecting fields come together in a series of “X-points”

rather than all along a parallel line. Petschek proposed a model where
not all reconnecting plasma has to go through the diffusion region.

Some plasma short-circuits the diffusion region and forms SHOCKS along

the inflow/outflow interface.

Petschek’s
uin

VA
≈ 1

lnS
which isn’t as tiny as Sweet-Parker’s.

• If the diffusion region “wants” to get smaller than the particle Larmor

radii, then non-MHD collisionless effects can take over. (Electrons and
ions decouple from a common fluid motion.) This is related to the Hall

effect from Ohm’s law. Vasyliunas (1975, Rev. Geophys. & Space Phys.,
13, 303) derived some straightforward modifications to the Sweet-Parker
theory for finite “inertial lengths.” More on these in a bit...
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BEYOND MHD...

Thus far, we’ve assumed that astrophysical plasma motions occur on large
spatial & time scales, compared to scales that individual particles care about:

MHD =⇒ L ≫





λD,s Debye length (species s)
ℓmfp,s collisional mean free path

r⊥,s Larmor gyroradius

Equivalently, using the “most-probable” (thermal) speed vth,s we see that
MHD implies slow variability:

MHD =⇒ 1

t
≪





ωps = vth,s/λD,s plasma frequency
νcoll,s = vth,s/ℓmfp,s collision frequency

Ωs = vth,s/r⊥,s cyclotron frequency

Most astrophysical plasmas have λD,s ≪ L, and they tend to be dilute enough

that ℓmfp ≫ r⊥ , but the other orderings can run the gamut...

L > ℓmfp > r⊥ collisional fluid

ℓmfp > L > r⊥ collisionless fluid
ℓmfp > r⊥ > L collisionless kinetic

Knudsen number (Kn = ℓmfp/L) is used for atmospheres → exospheres.

When single particles do what they want to do (without frequent collisions),
f(p) may no longer be even close to Maxwellian.

We’ll go over three general effects:

1. Non-Maxwellian anisotropy in a strong magnetic field.
2. Kinetic-scale waves that can damp or grow (“micro-instabilities”).

3. Collisionless particle drifts such as ambipolar diffusion.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1) Anisotropy: In collisionless & kinetic regimes with strong B, the
system can exhibit, e.g., T⊥ 6= T‖, κ⊥ 6= κ‖, and so on.

This is clear to see for individual particles flowing along a magnetic field that

varies spatially. We can describe how particle motion is affected (in a
decidedly non-Maxwellian way!) by looking at:
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Magnetic Moment Conservation

Consider particles gyrating around B, but gradually moving (via v‖) into a
region of increasing field strength:

(i.e., from equator to pole along Earth’s dipole)

Let’s think of this like the magnetic “flux tube” from the homework:
B is dominated by its “axial” field Bz, and it’s got

Br > 0 when tube expands as z ↑
Br < 0 when tube constricts as z ↑ and Br = −r

2

∂Bz

∂z

and let’s assume constriction; i.e.,
∂Bz

∂z
> 0 ,

where the latter came from ∇ ·B = 0 in cylindrical coordinates.

For B being dominated by its z component, the gyroradius r⊥ = v⊥/Ω is

∝ 1/Bz, i.e., r⊥ decreases as B gets stronger. This makes sense; the whole
thing is converging, and thus r⊥ behaves essentially like the “tube radius.”

When B was constant, the Lorentz force on a charged particle gave gyromotion
in v⊥ (which we’ll also call vφ) and a constant value of v‖ = vz.

Now let’s re-evaluate the parallel component of the Lorentz force for this case
of varying Bz. In cylindrical coordinates, the gyromotion is vφ, and there’s
virtually no vr.

m
dv

dt
=

q

c
(v ×B) m

dvz
dt

= −q

c
vφBr (before, Br was zero) .

Recall that positively charged particles (q > 0) are left-hand polarized.

If Bz points along the +z direction, then vφ < 0.
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Negative particles (q < 0) are right-hand polarized, so they’d have vφ > 0.

No matter what, the product qvφ < 0. Thus,

m
dvz
dt

= +
∣∣∣
qv⊥
c

∣∣∣Br = −
∣∣∣
qv⊥r

2c

∣∣∣
∂Bz

∂z
= −µ

∂Bz

∂z

where we define µ as the magnetic moment of a charged particle.

Note that the radius r of the tube behaves just like the gyroradius, so let’s use
r⊥ for r...

µ =
∣∣∣
qv⊥r⊥
2c

∣∣∣ =
∣∣∣
qv⊥
2c

v⊥
Ω

∣∣∣ =
∣∣∣∣
qv2⊥
2

m

qBz

∣∣∣∣ =
∣∣∣∣
1
2
mv2⊥
Bz

∣∣∣∣

i.e., µ is the kinetic energy in gyro-motions, divided by the flux tube’s field
strength.

Thus, m
dvz
dt

= −µ
∂Bz

∂z
So what? Who cares?

This does tell us that

charged particles

{
accelerate

decelerate

}
along the direction of

{
weakening B

strengthening B

}

We will see that single particles obey µ = constant along a field line. If that’s
the case, then v2⊥ ∝ Bz, so

going from

{
weaker → stronger B

stronger → weaker B

}
means

{
v‖ ↓ and v⊥ ↑
v‖ ↑ and v⊥ ↓

}

Eventually, a decreasing v‖ will hit zero, and there’s nothing to stop it

continuing to decrease into negative values!

The particle is thus reflected, and this kind of configuration is called a
magnetic mirror or (if there are mirrors on both ends) a magnetic bottle:
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Derivation: Why is µ = constant?

Let’s start by writing the vz equation of motion, and multiply both sides by
vz = dz/dt:

mvz
dvz
dt

= −µ
dBz

dz

dz

dt
d

dt

(
1

2
mv2z

)
= −µ

dBz

dt

(The cancellation of dz is tricky... this has to be a ‘Lagrangian’ derivative,

which follows the particle.)

On the left side above, we see the z-component of the kinetic energy EK. In full,

EK =
1

2
m(v2x + v2y + v2z) =

1

2
m(v2⊥ + v2z)

However, we know that the magnetic Lorentz force does no work on a particle,

so EK should be constant. This means

dEK
dt

=
d

dt

(
1

2
mv2⊥

)
+

d

dt

(
1

2
mv2z

)
= 0 .

But we can use the definition of µ, and the above version of the equation of
motion, to write

0 =
d

dt

(
1

2
mv2⊥

)
+

d

dt

(
1

2
mv2z

)

=
d

dt
(µBz) − µ

dBz

dt

=

(

�
�
�
�

µ
dBz

dt
+Bz

dµ

dt

)
−

�
�
�
�

µ
dBz

dt

i.e., since Bz 6= 0, then
dµ

dt
= 0 or µ = constant .

The magnetic moment µ is called an adiabatic invariant.
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7.19



How does µ-conservation affect the MHD/fluid-like nature of a system as we
transition from a collision-dominated to collisionless plasma?

Particles move on circles in velocity space:

Many insights about single-particle motion generalize to f(p)’s...

〈12mv2〉 = 3
2kBT

〈12mv2‖〉 = 1
2kBT‖ (1 degree of freedom)

〈12mv2⊥〉 = kBT⊥ (2 degrees of freedom)





T =
T‖ + 2T⊥

3

Thus, if an initially isotropic (T‖ = T⊥ = T ) distribution evolves from strong to

weak B, it develops T‖ > T⊥ .

It’s possible to modify the MHD equations to account for anisotropy in
temperature (and/or pressure). Assuming bi-Maxwellian distrubtions (i.e.,
elliptical contours in v-space),

f(p) =
n

(2πmkB)3/2(T
1/2
‖ T⊥)

exp

[
−(v‖ − u‖)

2

2kBT‖/m
− v2⊥

2kBT⊥/m

]

is equivalent to a 3×3 stress tensor with

P =




P⊥ 0 0

0 P⊥ 0
0 0 P‖


 where P‖,⊥ = nkBT‖,⊥ .

We assume a “gyrotropic” distribution; i.e., the Larmor motions are so rapid
that the 2 transverse directions (x, y) are statistically equivalent to one

another.
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In the momentum equation, the pressure-gradient force is modified:

ρ
Du

Dt
= −∇ · P + · · ·

= −∇P⊥ + (B · ∇)

[
(P⊥ − P‖)

B

B2

]
+ · · ·

For 1D field-aligned flows (u,B ‖ êz), it simplifies to

ρ
Duz

Dt
= −∂P‖

∂z
−
(
P⊥ − P‖

Bz

)
∂Bz

∂z
+ · · ·

where the 2nd term on the RHS is an effective magnetic mirror force that

depends on how “squashed” f(p) becomes in a field varying along z.

The mirror force provides extra acceleration when T⊥ > T‖, i.e., lots of
particles at high v⊥ ready to be “folded down” into the +v‖ direction.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The thermal energy equation is also modified. Consider just the adiabatic
limit. For a parcel of isotropic (Maxwellian) ideal gas,

D

Dt

(
P

nγ

)
=

D

Dt

(
T

nγ−1

)
= 0 −→ T ∝ n2/3 (for γ = 5/3)

Chew, Goldberger, and Low (1956) [“CGL”] plugged in the the modified P to
develop double-adiabatic equations for T‖ and T⊥ that are often used in

space physics.

Simple/approximate motivation for CGL equations:

(1) One finds that µ-conservation holds for distributions, not just for single
particles:

v2⊥
B

= constant −→ 〈v2⊥〉
B

= constant

Thus,
D

Dt

(
T⊥
B

)
= 0 −→ T⊥ ∝ B

(2) There is a 2nd adiabatic invariant: Consider a “magnetic bottle” as above,

and particles bounce back and forth between the two ends.
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If the length L of the bottle decreases in time, the particles will bounce off
approaching walls, and increase their speed. In this system, one can show that
J = v‖L = constant.

Now think of this bottle as a cylinder with length L, cross-section area A, and
magnetic field B pointing along the axis.

If L shrinks, the number of particles in the tube should remain the same:
N = nV = nLA = constant.

We also know magnetic flux conservation requires BA = constant. Thus,

nL

B
= constant , i.e., L ∝ B

n
.

However, J conservation says v‖ ∝ 1

L
∝ n

B

and making the same assumption that v2‖ behaves similarly to 〈v2‖〉, we see that

D

Dt

(
T‖B

2

n2

)
= 0 −→ T‖ ∝

n2

B2

In the isotropic limit, the CGL relations (kind of) reduce back to the standard
adiabatic law:

T ∼
(
T‖T

2
⊥
)1/3 ∝

[
n2

B2
B2

]1/3
∝ n2/3 .

In space plasmas, CGL theory is useful, but expected trends in T‖ 6= T⊥ are

often perturbed by many other non-adiabatic effects.

Example: spherical solar wind:

n, B both ∼ 1/r2, so in the absence of
other effects, we expect =⇒ =⇒

CGL would predict T‖/T⊥ ≈ 100 at 1 AU,

but observations show T‖/T⊥ ∼ 1.

What other effects are at play? Next topic...
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Before moving on, I should mention one other anisotropic modification to the
energy equation: heat conduction is much more efficient along a B field than
across it: κ‖ ≫ κ⊥

(First, let’s go back to thinking of B as a constant. One effect at a time!)

Why would heat conduction be anisotropic? Remember that collisions take
particles on a random walk, with nominal step size ℓmfp.

Recall from our study of single particles that motion along B is unimpeded by
the magnetic Lorentz force.

=⇒ Collisions along the field act like there’s no field.

However, in the ⊥ direction, particles gyrate with mean radius r⊥ = vth/Ω.
Also, most magnetized plasmas tend to have

r⊥
ℓmfp

≪ 1 , i.e.,
ℓmfp

r⊥
= τcollΩ =

{
magnetization
parameter

}
≫ 1 .

Thus, when “random walking” across the field, the effective step sizes are
limited by r⊥ rather than the larger ℓmfp the particles would have wanted.

If the motion over a given ⊥ distance was ballistic, it would take N = ℓmfp/r⊥
times more steps to go a given distance than if there was no field.

However, random walks are usually diffusive, so it really takes

N2 = (ℓmfp/r⊥)2 = (τcollΩ)
2 times more steps to go a given perpendicular

distance.

Thus, it’s not surprising that a more rigorous calculation gives

κ‖ ≈ τnk2BT

m
and κ⊥ ≈ κ‖

(τΩ)2
≪ κ‖ .
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(2) Kinetic-Scale Plasma Waves

We’ve seen how particle–particle collisions can:

• transport momentum & energy

• drive velocity distributions to isotropic Maxwellian equilibrium

• damp out oscillations

• give finite thickness to shocks (not in this course)

However, all of these things occur in the absence of collisions, too.

Collisionless effects like:

{
(linear) wave–particle interactions

(nonlinear) wave–wave interactions

}

become important when the fluctuations take place on small enough (kinetic)
space & time scales.

In the “Jello” problem, we considered electrostatic oscillations in of ne

(assuming np = fixed), and discovered ω = ωpe.

However, we used MHD-ish conservation equations, which presumed fe(p)
always remained a drifting Maxwellian.

Let’s look again at these fluctuations. Assume B0 = 0, E0 = 0.
Also assume that all spatial variations are ‖ to E1.

The kinetic approach is to linearize fe = f0,e + f1,e istelf, like in the
Chapman–Enskog problem (and assume fp = f0,p, charged-balanced with f0,e),
then the Vlasov equation & Gauss’ law can be solved for kinetic oscillations:

In 1D, k = kêx, so: f1,e = f̃1,e exp(ikx− iωt)

E1x = Ẽ1x exp(ikx− iωt) , E1y = E1z = 0

Faraday’s law: k× E1 = (ω/c)B1 = 0, so waves are purely electrostatic.

Thus,
∂f1,e
∂t

+ vx
∂f1,e
∂x

− eE1x
∂f0,e
∂px

= 0

∇ ·E = 4πe(np − ne) =⇒ ∂E1x

∂x
= −4πe

∫
d3p f1,e(p)
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In the jello problem, we imposed ∆n, and both E and v responded. Here, we
don’t need to worry about what drives what... we just need to figure out what
kinds of fluctuations are “allowed” in the system.

Vlasov & Gauss combine to produce the dispersion relation for ω(k):

Ẽ1x

[
1 +

4πe2

mek

∫
d3p

∂f0,e/∂px
ω − kvx

]
= 0 .

I won’t delve any deeper with the math, but note that:

• The dispersion relation depends on the shape of f0,e(p).

If it’s Maxwellian, ω2 ≈ ω2
pe + 3k2v2th,e (Langmuir waves) .

• However, note the “resonant” term in the denominator. The integral

blows up when vx ≈ ω/k, i.e., when a particle in the distribution happens
to be “surfing” along with the wave’s phase velocity.

Most particles “see” a sinusoidally oscillating E1 field, but these (few)
resonant particles don’t: they see a DC field (in their own frame).

Thus, resonant particles can be rapidly accelerated by that DC field.
Depending on phase, some are sped up, & some are slowed down.

This yields diffusion in velocity space... much like collisions.

• The kinetic energy gained/lost by resonant particles must be balanced by

something else: the energy in the wave oscillation itself.

Thus, the presence of resonant particles acts like Coulomb collisions to

create an imaginary part (ω = ωr + iωi). If ωi < 0, resonances produce
wave damping (i.e., Landau damping in the above Langmuir wave

example), or, if ωi > 0, they drive instabilities!

The sign of ωi depends on the shape of f0,e(p).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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What’s really going on here? The sign of ωi depends on the sign of ∂f0,e/∂vx
at vx = ωr/k:

It’s clear that particles with vx ∼ ωr/k interact strongly with waves.
Think about this interaction as a kind of friction...

• Particles with vx = ωr/k surf exactly in phase with the wave. Their speeds
are equal, so no friction.

• Particles with vx ∼> ωr/k (slightly faster than the wave) are “grabbed” by
the wave and slowed down (i.e., particles lose energy to the waves).

• Particles with vx ∼< ωr/k (slightly slower than the wave) are “sped up” by

the quasi-friction (i.e., particles take energy from the waves).

Thus, the net effect depends on whether there are more particles of one kind
or the other.

In a Maxwellian, there are more particles with vx ∼< ωr/k, so the net effect is
wave damping & particle energization. For a bump-in-tail (beam), it’s the
opposite.




Some complex systems oscillate back and forth between
damping (ωi < 0) and instability (ωi > 0). After each

“swing,” the amplitude |ωi| gets smaller, and it evolves to
marginal stability (ωi ≈ 0); i.e., kind of like equipartition

of energy between waves & “free energy” in background f0(p).
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There’s so much “richness” in the physics of electrostatic kinetic fluctuations,
and we didn’t even include the magnetic field (neither a background B0 nor
fluctuations B1).

When B is included, the Vlasov equation can be linearized, and combined with
Faraday’s law to write B1 in terms of E1.

Just like above, the perturbed f1 is a function of both E1 and ∂f0/∂p, and it
all goes into a similar dispersion relation.

Solutions are even richer in terms of all the qualitatively different wave modes.
Even with just k ‖ B0 in the limit of β ≪ 1, there’s so much:
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There are Alfvén-like waves, which eventually change into cyclotron
resonant waves when ω gets as big as Ω. Particles in vicinity of these wave
also undergo a type of “surfing” (like Landau damping), because the oscillating

E1 is transverse to B0 and is circularly polarized. Thus, particles at the right
frequency,

ω − k‖vz = ±Ωj (usually for j = p, e)

see a DC electric field, and get rapidly spun-up or spun-down.

Application: high-speed solar wind!?

There’s also a solution for ω(k‖) that is equivalent to classical
electromagnetic radiation. Why not? We were looking for waves along

some direction B0, for whom Faraday & Ampère say the E1 and B1 amplitudes
must be transverse. It would be surprising if these waves weren’t there.

(3) Collisionless Particle Drifts & Ambipolar Diffusion

Lastly, there are several non-ideal MHD effects that occur when collisions are
infrequent enough that the bulk speeds us of various species are unequal.

When first deriving the MHD equations, we included ion–electron collisional

“friction” on the RHS −→ resistivity. When ui 6= ue, one sees additional
Hall terms in the generalized Ohm’s law.

More common to see in astrophysics, though, is the idea of friction between
ions (i) & neutrals (n) in a partially ionized plasma:

mini
Dui

Dt
+ ∇Pi −

J×B

c
= miniνin (un − ui)

mnnn
Dun

Dt
+ ∇Pn = mnnnνni (ui − un)

where miniνin ≈ mnnnνni, and we assume electrons are “mobile” enough to

rapidly adjust their ne and ue to maintain charge neutrality.

Let’s assume a weakly ionized gas (e.g., in a protoplanetary disk), so that

ni

nn
≪ 1 and the common fluid u ≈ un .
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It’s also true that Pi ≪ Pn because the neutrals dominate in density, so we can
also be confident in saying |∇Pi| ≪ |∇Pn|.

Let’s consider a nearly time-steady system, so we can ignore the D/Dt terms

in both equations.

Look at the momentum equation for the neutrals: the RHS is balanced only by

∇Pn. However, that same RHS is in the ion equation, and the ∇Pi term on
the left is tiny in comparison to it. Thus, let’s also ignore the ∇Pi term.

This means that the short-lived ions respond “instantaneously” to the
collisional & magnetic forces only, so that the ion equation becomes

J×B

c
≈ miniνin (ui − un) .

We would like to know how ui differs from the bulk u ≈ un. Thus, we write

ui ≈ un + (ui − un) ≈ u +
J×B

miniνinc

2nd term: the ambipolar drift velocity.

Notation alert: Astronomers follow Mestel & Spitzer’s (1956) adoption of the

term “ambipolar” for this effect. However, some plasma physicists use this
term for the ∇Pe term in Ohm’s law (which was dealt with in astronomy by

Pannekoek & Rosseland). Completely different usage!

Anyway, how does this drift term affect the system?

The magnetic induction equation really cares only about ion motion...

∂B

∂t
= ∇× (ui ×B) + DB∇2B

= ∇× (u×B) + ∇×
[
(J×B)×B

miniνinc

]
+ DB∇2B

Thus, we have a new term on the right-hand side of the induction equation.

The new term is called ambipolar diffusion. Why?
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Let’s use Ampere’s law without displacement current (i.e., J ∝ ∇×B).

Also consider a simple geometry for a sheared field: B = Bz(x, t)êz, with
u = 0, DB = 0.

∂Bz

∂t
=

{
∇×

[
((∇×B)×B)×B

4πminiνin

]}

z

= ❀ =
∂

∂x

[(
B2

z

4πminiνin

)
∂Bz

∂x

]

This is a (cross-field) diffusion equation, with an ambipolar diffusion coefficient

given by

DAD =
B2

z

4πminiνin
=

V 2
A,i

νin
=

V 2
A,n

νni
and this effect is essentially a momentum redistribution mechanism that
“allows” B to act on neutral particles, via the intermediary effect of
ion-neutral collisions.

It doesn’t formally “break” the field lines like the DB resistivity term does.
It just allows the field and the flow to become decoupled from one another.

The field and flow diffuse past one another.

Ellen Zweibel introduced the idea of a corresponding ambipolar Reynolds

number. We might as well call it

Zw =
u ℓ

DAD
.

When Zw ≫ 1, all particles are frozen to the field lines, like in ideal MHD.

When Zw < 1, ambipolar diffusion is important, and multi-fluid theory is

needed to determine how much relative field/flow drift there will be.
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Application:

Mestel & Spitzer (1956) invoked ambipolar diffusion as a solution to low-mass
star formation:

• An interstellar B exerts tension that may prevent gravitational collapse
(especially ⊥ to the field).

• In ideal MHD, a cloud can collapse only if its

µ2
φ =

{
gravitational potential energy

magnetic energy

}
> 1 .

and H I gas observations show that µφ ∼< 0.2 in the local ISM.

• Leaving out some constants, this quantity is

µ2
φ ≈ GM2/R

B2R3
≈ GM2

B2R4
≈ GM2

Φ2

where the magnetic flux through the object is

Φ =

∫
B · dA ≈ BR2

• Thus, if an object’s M and Φ are conserved as it collapses, in ideal MHD
one would expect µφ to remain constant during the collapse, too.

• However, if neutrals can slip past those “tense” field lines, they may

jump-start a collapse. Shu et al. (1987) showed that ambipolar diffusion
can indeed evolve a GMC core from µφ < 1 to µφ > 1.

• The field distorts a bit, since bulk/neutral collapse does drag along the

ions & electrons, and the friction also heats the gas.
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