
IDEAL MHD: What can we do with it?

We will discuss three general results of ideal MHD (DB = 0):

1. Equilibrium states: potential fields, force-free fields.

2. MHD waves: propagating perturbations about equilibrium states.

3. MHD instabilities: are equilibira stable or unstable?

(1) MHD Equilibria

What kinds of time-steady magnetic fields are generated by astrophysical

objects?

Fields and flows are interdependent (see the induction equation), but for now

let’s think about u = 0 (“magnetostatic” equilibrium).

I’ll use the Sun as an example source of magnetic fields, and we can ask how
B(r) evolves above the surface...

A spherical surface can be a complicated distribution of magnetic field. Even

the apparently “field-free” regions in between strong active regions contain a
distribution of salt-and-pepper tiny concentrations of B.

The geometry of the field lines that connect these regions depends on how far

one has to go to “find” enough opposite polarity to connect with...
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The near-Sun corona is magnetically dominated (β ≪ 1).

Eventually, the solar wind accelerates, and you can see from eclipse images
that the dipole-like field gets stretched out by the radially outflowing plasma

(up there, β > 1 again).

But in the low corona (r ∼< 2R⊙), the flow speed u ≈ 0, so momentum

conservation is hydrostatic:

−∇Pgas + ρg +
1

c
J×B = 0

For β ≪ 1, the ∇Pgas term is negligibly small compared to magnetic forces.

Also, when working out the numbers for coronal values of ρg and J×B, it
turns out that (near the surface) gravity is often negligible, too:

|ρg|
|J×B|/c ∼ ρGM⊙/r2

(B2/4π) / r
∼ V 2

esc

V 2
A

∼
(

< 600 km/s

1000–2000 km/s

)2

< 1 .

Thus, in the corona, J×B ≈ 0 (“force-free fields”)

There are 2 ways to make J×B = 0 (with a nonzero B):

J = 0 or J parallel toB

We will see that J ‖ B occurs for twisted strands of magnetic field

(“flux ropes”), which occur in prominences, filaments, and CMEs.
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Most of the volume of the corona obeys the first condition, J = 0, which in
MHD means that

4πJ

c
= ∇×B = 0 .

Remember that ∇×∇ψ = 0 for all scalar functions ψ, so this means that we

can express this kind of magnetic field as a gradient of a potential function,
B = −∇ψ .

(The minus sign is arbitrary, but it’s the usual convention.)

This is called a potential field, (or a zero-current field, or a vacuum field)

and it’s seen to be sort of a “ground state” (lowest magnetic-energy state) of a
magnetic field. Add any nonzero J to the system – say, by twisting it up – and

you add to the total magnetic energy.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proofs:

(a) Hand-wavy: Remember the equation for evolution of magnetic energy:

∂UB

∂t
+∇ · S = −J · E = −η|J|2 where UB =

|B|2
8π

.

So, as long as J 6= 0 in a “real plasma” (η 6= 0), one can still lose magnetic

energy. It can drain away until we reach a final state where both J = 0 and UB

is at a minimum value.

(b) More rigorous: We want to minimize the magnetic energy in a given
parcel of volume V

W =

∫

V

dV (B2/8π)

and we also know that, since ∇ ·B = 0 everywhere, Gauss’ divergence theorem

gives

∫

V

dV ∇ ·B =

∮

S

B · dS = 0 over the closed surface S,

and we can specify a fixed & known boundary condition for B at the surface S.

Let’s specify the field inside V as B = Bp + b, where Bp = −∇ψ,
and b is an arbitrary non-potential perturbation.
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However, we’ve already specified the boundary condition, and it can be shown
to be consistent with Bp (this is a classical Neumann-type boundary condition
that satisfies Laplace’s equation).

Thus, we’re NOT free to allow b to mess with this known boundary condition.
Thus, we must specify that [b · dS]S = 0 (i.e., the component of b normal to

the surface is always zero).

The magnetic energy inside the parcel is

W =
1

8π

∫

V

dV
(
B2
p + 2Bp · b + b2

)

and we’d like to know whether it can ever be smaller than the energy of the
corresponding potential-field parcel,

Wp =
1

8π

∫

V

dV B2
p .

Since the b2 term is additive, clearly we can only have W < Wp if the
cross-term is sufficiently strong and negative.

However, if we can show that the cross-term is ZERO, we’ll have proven that
Wp is the minimum!

∫

V

dV (Bp · b) = −
∫

V

dV (∇ψ · b) = −
∫

V

dV [∇ · (ψb)−
✘
✘
✘
✘
✘✘ψ(∇ · b)]

since ∇ ·B = 0 and ∇ ·Bp = 0, then ∇ · b = 0 too.

But what remains can be transformed with Gauss’ divergence theorem:

−
∫

V

dV ∇ · (ψb) = −
∮

S

(ψb) · dS

and since the component of b normal to S is always zero, this surface integral
is zero, too. Q.E.D.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What do potential fields look like? Remember that ∇ ·B = 0 for all magnetic

fields, so this means that Bp obeys

∇ · ∇ψ = ∇2ψ = 0 (Laplace’s equation)

The solution to Laplace’s equation for the spherical domain r > R⊙, when we
specify B(θ, φ) at the surface boundary r = R⊙, is well known.

6.4



In spherical coordinates, one can solve Laplace’s equation using the trick of
“separation of variables” to assume ψ is the product of 3 functions of each
spatial variable:

ψ(r, θ, φ) = R(r) Θ(θ) Φ(φ) .

If we substitute this back into Laplace’s equation, we can separate it into 3

ordinary differential equations.

The azimuthal part ends up sinusoidal: Φ(φ) ∝ eimφ, for m = 0,±1,±2, ...

The meridional part Θ(θ) is satisfied by associated Legendre polynomials
Pm
ℓ (θ), for ℓ = 0 or a positive integer, and −ℓ ≤ m ≤ +ℓ.

The combined angular solutions Y m
ℓ (θ, φ) are the spherical harmonics, and

they’re used in many fields...
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Lastly, the radial dependence of the potential ψ(r, θ, φ) is given by power-laws,
so the full solution is

ψ(r, θ, φ) =

∞∑

ℓ=0

+ℓ∑

m=−ℓ

[
aℓm

(
R⊙
r

)ℓ+1

+ bℓm

(
r

R⊙

)ℓ]
Yℓm(θ, φ)

where the aℓm coefficients are computed from the lower boundary condition,

and most physical systems also have bℓm = 0 in order for ψ → 0 at r → ∞.
When we have this solution, we then take B = −∇ψ to get the actual field.

ℓ = 0 monopole field ψ ∝ r−1 B drops off as 1/r2

ℓ = 1 dipole field ψ ∝ r−2 B drops off as 1/r3

ℓ = 2 quadrupole field ψ ∝ r−3 B drops off as 1/r4

ℓ = 3 octupole field ψ ∝ r−4 B drops off as 1/r5

Higher ℓ → more complex the structure in θ, φ

→ faster drop-off with increasing height.

Thus, the star’s dipole component “survives” to largest distances. Note that
Laplace’s equation allows there to be a monopole component (a00), but we

know that true magnetic monopoles don’t exist.

∇ ·B = 0 implies that

∮
B · dA =

∮
dΩ Br(θ, φ) = 0

so inward & outward flux over the surface must balance, and a00 = 0.

However, a split-monopole can exist: plus polarity in one hemisphere, minus

polarity in the other... and with |B| ∝ 1/r2. Any kind of radial flow can
stretch out the surviving dipole into something like this:
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The penalty is that at the equator, ∇×B 6= 0. Why? B is highly sheared in
this plane. You don’t need curved/swirling vectors for a nonzero curl...

For this field, ∇×B 6= 0.

Thus, J 6= 0 in this thin

current sheet region; Jφ 6= 0.

In the case of the Sun, we know that at larger radii the solar wind accelerates,
so all other terms in the momentum equation (including Du/Dt) become

important again.

However, if u ‖ B (i.e., particle flow follows the field), then the ideal induction

equation is
∂B

∂t
= ∇×

✘
✘

✘
✘
✘✘

(u×B) = 0

and B doesn’t evolve. If this remains a force-free situation, then everything

can remain time-steady.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Is it always the case that a system evolves to the minimum-energy (J = 0)
state? No!

A plasma can get “stuck” in a force-free situation where (by definition) the
forces acting on it are zero, but there is a nonzero J ‖ B.

In that case, we can write

∇×B = αB
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where, in general, the scalar α can be a function of position. However, there is
an additional constraint on α. If we take the divergence, we get

∇ · (∇×B) = ∇ · (αB) = 0 (from vector identity)

and ∇ · (αB) = ✘
✘
✘
✘✘α∇ ·B + B · ∇α = 0

which means that the projected component of ∇α along the field is zero.
α is constant along field lines.

The constant α is a magnetic torsion parameter that describes how
twisted-up the field is. α = 0 is a potential field.

Many systems like to relax to the so-called LFFF (linear force-free field) that
occurs when α = constant, throughout the whole volume.

Lundquist (1950) worked out an analytic solution in cylindrical geometry,
using Bessel functions Jn(x),

Br(r) = 0

Bφ(r) = ±B0 J1(αr)

Bz(r) = B0 J0(αr)

The “outer edge” of the cylinder is the first zero of J0(x), which occurs at
x = αRedge ≈ 2.405.

The Lundquist solution works very well as a fitting formula for twisted

“magnetic clouds” encountered by spacecraft in the heliosphere. These are the
interplanetary remnants of coronal mass ejections (CMEs).

In laboratories, cylindrical plasmas with helical, twisted fields are often created
via the pinch effect:
{

axial
azimuthal

}
fields are created by applying

{
azimuthal

axial

}
currents .
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(2) Linear MHD Waves

Why study waves? They help us understand the “simplest” ways that:

• a plasma responds to changes in external forces (e.g., ∇P , gravity, J×B);

• information propagates through a system in space & time.

Let’s start with the ideal MHD equations (no gravity or resistivity):

Mass:
∂ρ

∂t
+ ∇ · (ρu) = 0

Momentum: ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P +

(∇×B)×B

4π

Induction:
∂B

∂t
= ∇× (u×B)

No monopoles: ∇ ·B = 0

Note there are 2 “restoring forces” on right-hand side of the momentum
equation. Thus, there will be 2 qualitatively distinct flavors of waves.

There’s also the energy conservation equation, which we’ll put aside for now.

(Later we’ll assume adiabatic perturbations.)

So, the standard trick is to limit ourselves to LINEAR oscillations; i.e., small

(1st order) perturbations on top of a large-scale (0th order) homogeneous
background state.

Thus, we assume






ρ(r, t) = ρ0 + ρ1(r, t)
P (r, t) = P0 + P1(r, t)

B(r, t) = B0 + B1(r, t)
u(r, t) = u1(r, t)






where subscript-0 quantitites are constants, and we want to solve for how
all 8 (scalar) subscript-1 quantities vary in space & time.

Also, note that u0 = 0, implying the background is at rest (or that we’re in

the reference frame of a known flow).
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We assume |ρ1| ≪ |ρ0|, and so on, so that the equations can be linearized:

• Insert the full (0th + 1st) terms into the equations, and expand.

• Cancel out all 0th order terms, since the 0th order terms satisfy the
conservation equations exactly (trivially?). All ∂/∂t and ∇ are zero.

• Ignore 2nd order (and higher) terms (products of two or more 1st order

terms; e.g., ρ1u1, u1B1) because they’re so small in magnitude.

• For the 1st order terms, assume they vary as ∼ exp[i(k · r− ωt)].

• Boil the system down to a single linear equation, in which each term ought

to contain just one 1st order quantity. Cancelling out that quantity in each
term (OK because its amplitude is 6= 0) gives the dispersion relation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let’s try it. Start with the simplest ones...

No monopoles: ∇ ·B1 = 0

Mass conservation:

∂ρ1
∂t

+ ∇ · (ρ0u1) = 0 (recalling that u0 = 0)

∂ρ1
∂t

+ ρ0∇ · u1 = 0 (since ρ0 = constant)

Magnetic induction:

∂B1

∂t
= ∇× (u1 ×B0) (again because u0 = 0)

For the momentum equation, evaluating (∇×B)×B takes some thought.

Only 1 term survives:

(∇×B0)×B0 = 0 because B0 is constant

(∇×B0)×B1 = 0 also because B0 is constant
(∇×B1)×B0 6= 0 the one we keep (see below)

(∇×B1)×B1 = 0 negligible because it’s 2nd order.
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Thus, the momentum equation is: ρ0
∂u1

∂t
= −∇P1 +

(∇×B1)×B0

4π

However, we’re not done with it yet. Consider adiabatic changes in an ideal
gas. You’ve seen that

D

Dt

(
P

ργ

)
= 0 or P ∝ ργ

for a parcel in adiabatic equilibrium (no heat added or removed).

This is a constraint that must be in place if changes in P and ρ are to
maintain constant entropy; i.e.,

P

P0
=

(
ρ

ρ0

)γ

so
dP

dρ
= P0

γργ−1

ργ0
=

γP0

ρ0

(
ρ

ρ0

)γ

.

For small perturbations, we can call P1 = dP , ρ1 = dρ.

Also,

(
ρ

ρ0

)γ

≈ 1 for small perturbations.

Thus, for 1st order adiabatic oscillations,

P1

P0
= γ

ρ1
ρ0

and we define cs0 =

√
γP0

ρ0

as the 0th-order adiabatic sound speed. Thus, P1 = c2s0ρ1, and we get

the linearized momentum eqn: ρ0
∂u1

∂t
= −c2s0∇ρ1 +

(∇×B1)×B0

4π

We’ve now removed P from the system of equations.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The next step to linearization is to assume a sinusoidal dependence for the

1st order quantities.

As we saw before, expressions like

ρ1(r, t) = ρ̃1 exp [i (k · r − ωt)]

are good & separable solutions to classical wave equations, which we can show
the MHD equations to be equivalent to.
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Note that the amplitude ρ̃1 can be complex, but we assume it’s constant in
space & time.

We’ll assume the same kind of solutions apply to the components of u1 and B1.

k is the wavevector, pointing in the direction of propagation of the
oscillatory wave.

In general, k · r = kxx + kyy + kzz

but let’s simplify our model geometry.

Assume B0 = B0êz

and that k is in the x–z plane;

i.e., ky = 0, but kx, kz 6= 0.

We can write kx = k sin θ , kz = k cos θ .

Of course, u1 and B1 can have nonzero components in all three directions

(including y).

The sinusoidal variations make derivatives easy to write;

e.g.,
∂ρ1
∂t

= −iωρ1
∂ρ1
∂x

= ikxρ1

and we can thus replace: ∇ · F by ik · F , ∇× F by ik× F , ∇f by ifk .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We can turn the crank on the equations to see what we get. For example,

∇ ·B1 = 0 =⇒ k ·B1 = 0 .

This means that the magnetic perturbation B1 is always perpendicular to k.

The other equations contain a mix of ρ1, u1, & B1 terms... but each term has

only one of each (truly linear).

Thus, by combining them, we can end up with just one equation with all terms

proportional to just one variable, and collect it all together like, say,
{
stuff + stuff + stuff + stuff

}
u1 = 0
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Since u1 is our assumed “amplitude,” we don’t want it to be zero, so the other
{stuff} = 0 is the dispersion relation (i.e., a relationship between ω and k).

Preview: We’ll solve
{

mass conservation
induction

}
equation for

{
ρ1
B1

}
as a function of u1 ,

then plug both back into the momentum equation.

Mass:
∂ρ1
∂t

+ ρ0∇ · u1 = 0

−iωρ1 + iρ0(k · u1) = 0 =⇒ ρ1 =
ρ0
ω

(kxu1x + kzu1z) .

Induction:

∂B1

∂t
= ∇× (u1 ×B0) =⇒ B1 = −k× (u1 ×B0)

ω

which verifies that B1 must be ⊥ to k. (∇ ·B1 = 0 was redundant info.)

Working out the cross products,

B1x = −kzu1xB0

ω
B1y = −kzu1yB0

ω
B1z = +

kxu1xB0

ω

If ω, k, and u1 are all real, then ρ1 and B1 are real, too.

Doing the derivatives in the momentum equation,

ρ0
∂u1

∂t
= −c2s0∇ρ1 +

(∇×B1)×B0

4π
⇒ ωρ0u1 = ρ1c

2
s0k − i(k×B1)×B0

4π

Notice a few things:

• If B0 → 0, then u1 ‖ k. Acoustic waves are longitudinal. (β ≫ 1)

• If cs0 → 0, then u1 ⊥ B0. Purely “cold” MHD waves oscillate transverse
to the background magnetic field. (β ≪ 1)

These illustrate the 2 extremes, in which the “restoring force” is either

all ∇Pgas or all B tension.
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I’ll spare you the vector cross products, but it’s useful to keep going step by
step. Multiply each term by ω/ρ0, and we get three component equations in
terms of u1 only:





ω2u1x = c2s0kx(kxu1x + kzu1z) + B2

0

4πρ0
u1x(k

2
x + k2z)

ω2u1y = B2

0

4πρ0
u1yk

2
z

ω2u1z = c2s0kz(kxu1x + kzu1z)





The c2s term is gone in the y equation because it depends on k, and ky = 0.

The B2
0 term is gone in the z equation because of that final ()×B0 in the

Lorentz force.

The x & z equations are coupled to one another; the y equation stands apart.
Thus, there are 2 separate, decoupled kinds of MHD waves.

Let’s just look at the y equation:

The linear u1y terms cancel, and ω2 =
B2

0

4πρ0
k2z

Thus, we define the Alfvén speed, VA ≡ B0√
4πρ0

so ω = ±VAkz .

There are 2 solutions, corresponding to waves propagating in 2 directions.

These are Alfvén waves, for which:

• They induce fluctuations in only u1y and B1y, since the induction equation

gives

B1y = −B0

ω
kz u1y =⇒

∣∣∣∣
B1y

B0

∣∣∣∣ =

∣∣∣∣
u1y
VA

∣∣∣∣ ≪ 1

and u1y & B1y are 180◦ out of phase. Alfvénic perturbations are
transverse to the background field...

...and also transverse to the plane containing B0 & k.

Tension is the restoring force, like in a taut, plucked wire.
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• They are incompressible, since this mode has

u1x = u1z = 0 , so that ρ1 = B1x = B1z = 0 , as well.

• Their scalar phase speed (i.e., speed at which wave crests & troughs
propagate through space) is

Vph ≡ ω

|k| = ±VA cos θ

and note that Vph = 0 for θ = π/2.

• Their vector group velocity (i.e., speed at which they transmit energy
through the plasma) is

Vgr ≡ ∇kω =
∂ω

∂k
= êx

∂ω

∂kx
+ êz

∂ω

∂kz

and thus, Vgr = ±VAêz .

Thus, Alfvén waves always carry energy parallel to B0, even if the wave
itself is propagating obliquely to the field.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now, let’s look at the coupled x & z equations. We solve the z equation for

u1z =

(
c2s0kxkz

ω2 − c2s0k
2
z

)
u1x

then plug that back into the x equation.

I won’t go through the algebra. Each term is linearly proportional to u1x, so
those terms can be cancelled out. The resulting dispersion relation is

ω4 − ω2k2(c2s0 + V 2
A) + c2s0V

2
Ak

2k2z = 0 .

Very different from the Alfvén mode! It’s quadratic in ω2, but note that if we

divide by k4, we get a quadratic in V 2
ph = ω2/k2,

V 4
ph − V 2

ph(c
2
s0 + V 2

A) + c2s0V
2
A cos2 θ = 0

and the nice outcome that the ω’s and k’s completely disappear means these
waves are “dispersionless” (i.e., phase speeds independent of frequency).
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The solution to the quadratic is

V 2
ph =

ω2

k2
=

1

2

[(
V 2
A + c2s0

)
±
√

(V 2
A + c2s0)

2 − 4c2s0V
2
A cos2 θ

]

and there are 4 possible real solutions for Vph:

±[with upper sign] and ±[with lower sign].

Upper sign gives a larger |Vph|, so call it the fast-mode MHD wave.

Lower sign gives a smaller |Vph|, so call it the slow-mode MHD wave.

Restoring forces are a combination of magnetic & ∇P forces, so these are also

called magnetosonic waves. First worked out by Herlofson (1950, Nature,
165, 1020). To understand these modes better, let’s look at 4 limiting cases:

(1) Weak fields: B0 → 0, or cs0 ≫ VA . (β ≫ 1)

The Alfvén wave goes away completely, but the magnetosonic wave has

V 2
ph =

1

2

[
c2s0 ±

√
c4s0

]
(isotropic in k)

Thus,

{
the slow solution: Vph = 0

the fast solution: Vph = ±cs0 (the sound wave!)

}

and thus we think of magnetosonic waves as “magnetic modifications” of the

sound wave.

Mass conservation gives
ρ1
ρ0

=
k · u1

ω
=

u1 k

ω
⇒

∣∣∣∣
ρ1
ρ0

∣∣∣∣ =

∣∣∣∣
u1
cs0

∣∣∣∣

(2) Strong fields: cs0 → 0, or VA ≫ cs0 . (β ≪ 1)

Similarly,

{
the slow solution: Vph = 0
the fast solution: Vph = ±VA

}

but this is kind of “isotropic” in space. Not like the Alfvén mode, which has
Vph = ±VA cos θ.

For θ = 0, the strong-field fast mode is degenerate with the Alfvén mode.
(Makes sense; for θ = 0 there’s nothing to distinguish x from y). It’s

incompressible:
∣∣∣∣
B1x

B0

∣∣∣∣ =

∣∣∣∣
u1x
VA

∣∣∣∣ (orthogonal to Alfvén)
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(3) Parallel propagation: θ = 0, but arbitrary cs0 and VA .

The term under the square root is

±
√
(V 4

A + 2c2s0V
2
A + c4s0)− 4c2s0V

2
A = ±

√
V 4
A − 2c2s0V

2
A + c4s0 = ±(V 2

A − c2s0)

Thus, V 2
ph =

1

2

[(
V 2
A + c2s0

)
±

(
V 2
A − c2s0

)]

One sign choice gives Vph = ±VA . Other sign choice gives Vph = ±cs0 .

Our naming of “fast” vs. “slow” depends on which one is bigger.

Thus, for waves propagating along the field, there are only acoustic waves and

Alfvén waves. No mixing.

(Consistency check: for θ = 0, the system ought to behave the same in x as it

does in y). It does! X )

(4) Perpendicular propagation: θ = π/2, but arbitrary cs0 and VA .

I won’t go through the math, but it’s straightforward to show that

Slow: Vph = 0 , Fast: Vph = ±
√
V 2
A + c2s0 , ≡ ±VM

where VM is sometimes called “the” magnetosonic speed.

For waves propagating ⊥ to the field, the only restoring forces are ∇Pgas and
∇Pmag, and they join forces with one another to produce this mixed mode.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Handout: Here we use the plasma beta ratio to organize our knowledge

about the background properties:

β =
Pgas

Pmag
=

8πP0

B2
0

=
2

γ

(
cs0
VA

)2

though note that space physicists often define β ≡ (cs0/VA)
2 for simplicity (for

γ = 5/3, it’s smaller by a factor of 1.2). Be mindful of definitions!

The Alfvén mode is sometimes called the “intermediate mode MHD wave”
because it’s phase speed is always between fast & slow.
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kx

kzkzkzkzkz

kx

β = 10β = 2β = 1β = 0.5β = 0.1

“Friedrichs diagrams” for MHD waves: Phase speed plotted as radial distance, with the angle between k and B0 shown as the angle away

from the y–axis. Here, β = (cs/VA)
2. Blue point: Alfvén speed. Black point: sound speed. Curve color-codes shown below.

RED: FAST-MODE

BLUE:

ALFVÉN

GREEN: SLOW-MODE

Illustration of how MHD waves partition their total fluctuation energy into kinetic, magnetic, and thermal energy in various regimes: wavevectors

parallel to B0 (top row), an isotropic distribution of wavevectors (middle row), wavevectors perpendicular to B0 (bottom row); columns denote plasma β
regimes. Kinetic energy fractions are denoted vi, magnetic energy fractions are denoted Bi, and the thermal energy fraction is denoted ‘th’.
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The handout describes how the various types of waves are “partitioned” in
terms of their energy density fractions.

Waves transport energy. First, I’ll show you how the energy components are

written, then I’ve got to convince you they’re really meaningful quantities!

Energy densities are 2nd order products of fluctuations:

Kinetic: UK =
1

2
ρ0|u1|2 Magnetic: UB =

|B1|2
8π

Thermal: Uth =
P 2
1

2γP0
=

1

2
ρ0 c

2
s0

(
ρ1
ρ0

)2

(adiabatic)

What about electric UE = |E1|2/8π ? In ideal MHD, we can ignore it.

Recall Faraday’s law: k×E1 =
ωB1

c
so |E1| ∼

Vph
c
|B1| ≪ |B1|

Of course, for electromagnetic radiation, Vph = c, so |E1| = |B1|.

The handout shows how the MHD wave components are partitioned.

For Alfvén waves (and other MHD waves when β ≪ 1),

UK = UB and Uth = 0

( |u1|
VA

=
|B1|
B0

)

For acoustic waves (i.e., magnetosonic waves when β ≫ 1),

UK = Uth and UB = 0

( |u1|
cs0

=
ρ1
ρ0

)

It’s also possible to show that UK always takes up exactly half of the “pie”

(in ideal MHD).

But what is really going on with these 2nd order fluctuations?

If they’re really meaningful, they’ve got to be something more than just
“even tinier” fluctuations.

A true “energy transport” (which makes a difference to the plasma as a whole)
must have a nonzero mean value, when integrated over times > 1 wave

period.
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However, we know the 1st order quantities are sinusoidal; i.e., they average to
zero over 1 or more periods.

Thought experiment: Consider 2 sinusoidal variables:

f(r, t) = f0 + f1(r, t) = f0 + Feiθ (θ = k · r− ωt)

Also, g(r, t) = g0 + Gei(θ+ψ) and we say that F and G are real.

We allow g to be offset in phase from f , but note that the MHD waves we

derived above all have ψ = 0.

Our energy densities contained products like (f1g1). However, physically

relevant energies must be real.

Thus, let us only consider U = ℜ(f1)ℜ(g1)

U oscillates, but what is the average value taken over 1 period?

〈U〉 =

∫
dθ U∫
dθ

=
1

2π

∫ 2π

0

dθ ℜ(f1)ℜ(g1)

=
FG

2π

∫ 2π

0

dθ cos θ cos(θ + ψ)︸ ︷︷ ︸
cos θ cosψ−sin θ sinψ

We know the integral of sin θ cos θ is 0, and integral of cos2 θ is π. Thus,

〈U〉 =
1

2
FG cosψ

which is just FG/2 for MHD waves with ψ = 0.

(Other kinds of waves, like internal gravity waves in stellar atmospheres, can

have ψ = 90◦, so 〈U〉 = 0.)

Where were the 2nd order “cross terms?” (i.e., ρ1u1)
They show up embedded inside the full energy conservation equation for

linear waves:
∂U

∂t
+ ∇ · F = 0

where (in ideal MHD) it ends up that the energy flux F = UVgr, but its
components contain all those cross terms.
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Lastly, I should remind you that it’s really kind of artificial to think about
fluctuations in terms of:

0th order background state

1st order oscillations
2nd order wave energy

In reality, it’s one system. Some time-averaged 2nd order terms feed back into
the 0th order conservation equations:

• Wave damping −→ heats the gas (energy equation).

• Even “passive” wave propagation (through an inhomogeneous background

state) can produce 2nd order terms in the momentum equation:
“ponderomotive wave-pressure forces.”

Those are topics for other courses....
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(3) MHD instabilities

Plasmas are host to many possible instabilities. They matter a lot for fusion
plasmas!

When the 0th order “background” state is no longer spatially homogeneous,
it’s difficult to tell whether it is a stable or an unstable equilibrium:

The idea is to perturb the equilibrium with 1st order oscillations (e−iωt) then
check to see if ω is real (stable), imaginary & negative (also stable), or

imaginary & positive (unstable: exponential growth).

Of course the linear growth phase is just the beginning. Most instabilities
change character when they enter the nonlinear phase (often saturating), but

by that time the “damage has been done.”

We will limit ourselves to studying instabilities in ideal MHD. According to

Andrei Simakov (LANL):

• “if Ideal MHD predicts instability you are dead;

• if Ideal MHD predicts stability some other unpleasant instabilities can still

exist but you might have a chance.”

(This doesn’t include kinetic “micro-instabilities,” which we’ll talk about

briefly, later.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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We won’t delve too far into the mathematical details, but I’ll illustrate one
popular linearization strategy.

As with MHD waves, separate the plasma properites into 0th and 1st order

parts, but now allowing background to be spatially varying:

ρ(r, t) = ρ0(r) + ρ1(r, t)

u(r, t) = u1(r, t)
P (r, t) = P0(r) + P1(r, t)

B(r, t) = B0(r) + B1(r, t)

Also, define the fluid displacement vector ξ (i.e., the oscillating position
vector pointing to the parcel):

u1 ≡ ∂ξ

∂t
, ξ(r, t) =

∫ t

0

dt′ u1(r, t
′) .

Linearize the conservation equations, but then integrate them in time

(assuming all perturbations = 0 at t = 0), to get expressions for:

ρ1(r, t) = −∇ · (ρ0ξ)

P1(r, t) = −ξ · ∇P0 − γP0∇ · ξ
B1(r, t) = ∇× (ξ ×B0)

where, on the RHS, there are only 0th order quantities and ξ.

Using the above, the momentum equation turns into a true equation of motion

for a small linear parcel,

ρ0
∂2ξ

∂t2
= F [ξ(r, t)]

where the ideal MHD force operator is

F [ξ] = −∇P1 +
(∇×B1)×B0

4π
+

(∇×B0)×B1

4π

which is a function of only ξ, P0, and B0 and their spatial derivatives.

(Note that this F has units of force per unit volume.)
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We can glean some basic “intuition” about the physics...

Also, people often assume ξ(r, t) = ζ(r)e−iωt, so the equation of motion

becomes an eigenvalue equation for ω2.

They often also prefer to work with the potential energy (due to work done by

the displacement), which can be written for a volume V as

δW = −1

2

∫

V

dV ξ · F[ξ] (and if δW < 0, it’s unstable!)

We will mainly examine several situations with different forces (F) on the

right-hand side, and see what kinds of instability occur.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Brief overview of 4 types of instabilities:

A. Buoyancy instabilities act when the background state is gravitationally
stratified.

B. Shear instabilities act when “nearby” flows have different speeds; what

happens at the boundary between them?

C. Pinch instabilities act when guiding fields vary to disrupt confined “flux
tubes” (important in lab plasmas!)

D. Resistive instabilities: act only when η 6= 0; possibly important in
magnetic reconnection regions.
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(A) Buoyancy Instabilities

I’m sure you’ve seen the Schwarzschild convective instability before.

In a hydrostatic stellar interior (∂ρ0/∂r < 0), a bubble of gas may become

displaced up or down by ∆r from its initial height r. If it stays in pressure
equilibrium with its surroundings, and its evolution is adiabatic, then its

new density ρB may be either > or < than the surrounding density ρS at its
new height.

ρB(r +∆r) > ρS(r +∆r) , the bubble will drop (stable) ,

ρB(r +∆r) < ρS(r +∆r) , the bubble will keep rising (unstable) ,

See my stellar astrophysics (ASTR-5700) lecture notes for more!

However, let’s zoom in on places at the bubble boundary where there is
high-density gas “on top of” low-density gas; i.e., consider a local environment

in which g · ∇ρ0 < 0. Other examples:

• Water sitting on top of oil in a beaker

• An explosion, in which hot (low-ρ) gas is at the “center” and is plowing

into cool (dense) gas “higher up.” (e.g., supernova... or atomic bomb!)

• A strong-B piece of plasma embedded in a weak-B atmosphere, which is
in total pressure equilibrium.

With no magnetic field, this is the classical Rayleigh–Taylor instability.
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If a heavy parcel drops down, while a lighter parcel rises up buoyantly to
replace it, the gravitational potential energy of the system decreases.

Thus, the system will always “want” to evolve this way, and thus this

heavy-on-top-of-light system (ρ+ > ρ−) is always unstable.

You’ll find that, for B = 0, the resulting linear frequency of the perturbed

system is

ω2 = −
(
ρ+ − ρ−
ρ+ + ρ−

)
g k⊥

where g > 0 and k⊥ is the imposed horizontal wavenumber of the vertical

displacement vector (at the interface),

ξz ∝ exp(−iωt+ kxx+ kyy) k⊥ =
√
k2x + k2y .

Thus, for ρ+ > ρ−, ω is imaginary. Sometimes the growth rate γ is defined as
ω = iγ, so that γ > 0 corresponds to instability.

On the ocean surface, ρ− ≫ ρ+, so the interface can host stable
surface gravity waves (f -modes) with ω ≈

√
gk⊥.

The nonlinear phase of the growth departs from sinusoidal ξ,

Of interest in this course is what happens when a magnetic field is added. In
general, this is the “magnetic R–T instability.”

For simplicity, consider a horizontal B0 = B0êy in the LOWER region, and no
field in the upper region.

Because the y direction is now different from the x direction, there are 2
qualitatively different types of magnetic buoyancy instability:
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(A1) Interchange Mode for k ⊥ B0 , i.e., kx only

Also called the “fluting” instability, or the Kruskal–Schwarzschild (1954)
instability... but some assert Tserkovnikov (1960) discovered it earlier?!

Field lines don’t bend, but they are shuffling around in space. Magnetic
pressure can change, but tension doesn’t.

Above & below, there’s stratification in Ptot = Pgas + Pmag in the same way
that the R–T instability had stratification in just Pgas.

=⇒ The growth rate is comparable to R–T.

(A2) Undular Mode for k ‖ B0 , i.e., ky only

Astro & space physics types usually call this the Parker (1966) instability...

even though Newcomb (1961) found it first?!

In this case, ξ will induce field-line curvature; i.e., changes the magnetic

tension force. Stability is possible if an upward ξ corresponds to a net
downward total F.

Think about the magnetic interface as being part of a “flux tube:”
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F+ ≈ g∆ρ ≈ g (ρ+ − ρ−) F− ≈ |B · ∇B|
4π

∼ B2

4πrcurv

If ρ− is low, the tube will be buoyant. Assume the 2 regions are in total

pressure equilibrium & thermal equilibrium:

P+ = P− +
B2

8π
T+ = T−

Thus,
ρ+kBT

µmH
=

ρ−kBT

µmH
+
B2

8π
=⇒ ∆ρ = ρ+ − ρ− =

B2

8π

(
ρ+
P+

)

And the tube is held down (i.e., is stable to perturbations) if

F− > F+ i.e., if
B2

4πrcurv
>

B2

8π

(
ρ+ g

P+

)

Recall the isothermal scale height H =
kBT

µmHg
=

P+

ρ+ g

so the system is stable if rcurv < 2H .

“Tighter curves” = more tension; long wavelength undulations most unstable.

(This was all very qualitative. We ignored the stratification that must exist
between the equilibrium height and the “plucked” height! See worked-example
handout for a more exact approach.)

Note: There is also a related ballooning instability that has several
different definitions (depending on the author/book).

In my understanding, it involves what happens to 2 fixed “sources” of strong B
connected by horizontal fields in a stratified medium:

If there’s a buoyancy instability, 3 additional things will happen:
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• Lower regions have smaller rcurv than upper regions, so the field lines will
preferentially “balloon out” in upper regions.

• This may occur too rapidly to maintain Ptot equilibrium, so the upper

(low-B) regions may get evacuated (low-ρ).

• Thus, gas may “drain down” to the sources and induce strong
compressive fluctuations.

This may be an important process for GMC formation & accretion in the ISM.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(B) Shear Instabilities

What happens when there is a 0th-order velocity field u0 that is not uniform in
space? Two examples:

(B1) Kelvin–Helmholtz Instability occurs for parallel flows with different

speeds:

With no magnetic field, a sinusoidal perturbation at the interface creates a

tiny amount of vorticity. Flows induced in the surrounding regions push “up”
on the crests, and “down” on the troughs, thus amplifying the instability.

One can show that the instability occurs when

kx >
(ρ2− − ρ2+)g

ρ+ρ−|∆u|2
where ∆u = u+ − u−

(i.e., using x as the direction parallel to the u0 vectors).
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• When gravity is unimportant (g → 0), any amount of shear is unstable.

• When stratification is R–T stable (ρ− > ρ+), gravity stabilizes low-k (long
wavelength) modes, and it’s high-k (short wavelengths) that’s most

unstable.

• When ∆u grows, the threshold k⊥ drops, so more shear means it’s easier
to excite more modes.

What happens when we add a magnetic field?

If B0 points along y and u0 points along x, it’s similar to the interchange
mode: no change in stability. (For this setup with an interface!)

If B0 is parallel to u0, the instability is suppressed by strong magnetic tension,
similar to the Parker instability. It’s unstable only when

|∆u|2 > (B2
+ +B2

−)(ρ+ + ρ−)

4π ρ+ρ−

Having B 6= 0 on one side stabilizes the system, but having B 6= 0 on both sides

stabilizes it even more.

(B2) Magnetorotational Instability (MRI) (Balbus & Hawley 1991)

is triggered when B starts out ⊥ to a plane containing rotational shear;
e.g., a Keplerian disk.

MRI is the dominant idea for what makes accretion possible in accretion disks.
(By the way, Wikipedia’s page on MRI is surprisingly good!)

A Keplerian disk contains parcels of gas that rotate around a central object of
mass Mc with

v2φ
r

=
GMc

r2
=⇒ Ω(r) =

vφ
r

=

√
GMc

r3
=⇒ J ∼ mr2Ω(r) ∝ r+1/2

Each “ring” is sheared with respect to surrounding rings. Even though Ω
decreases as r ↑, angular momentum increases outward.

Magnetic tension provides “springiness” between neighboring parcels, that
connects them and generates friction. Consider the following chain of events:
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• Initial perturbation: inner parcel mi rotates faster than an outer parcel mo.

• If B had its way, the disk would be rotating rigidly! Magnetic tension tries
to pull back on mi, and tries to drag mo forward.

• Thus, mi experiences a retarding torque, loses angular momentum, and
must fall inward to be where it “should.” Similarly mo moves outward.

• Greater separation means more tension force... which induces larger

torques... and the perturbation grows in an unstable way.

Long-wavelength modes are most unstable, because tension is weak −→
shear “wins.”

As long as the disk has ∂Ω/∂r < 0, and there’s enough ionization for the

magnetic field to exert a force on the gas... shear generates transverse “plucks”
in the high-tension field lines: i.e., Alfvén waves: VA = ω/kz.

Small wave-like perturbations grow, so J-transport becomes global (ω ∼ Ω).

MRI maximum growth rate occurs for kz,max ≈
Ω

VA

where VA = B/
√
4πρ is the familiar Alfvén speed.

Perturbations grow like eγt with γ ≈ 3

4
Ω .

Note: wave period ω is ≈ growth rate γ.

If the perturbations driven by MRI “stir up” the gas in the disk, they may
excite Kolmogorov-like turbulence...
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(1) Energy injected at input rate γ = 3Ω/4.
(2) Energy cascades down the pipe at rate τ−1

nl = v0/ℓ0 = k0v0.

Thus, if k0 = kz,max, and if the rates are equal (for steady-state... what goes in
must come out!), then we can solve for the driving-scale eddy velocity

v0 ≈
γ

k0
≈ 3

4
VA

and the “turbulent viscosity” is

νturb ≈ v0ℓ0 ≈
v0
k0

≈ ❀ ❀ ≈
(
3V 2

A

4c2s

)

︸ ︷︷ ︸
α

c2s
Ω

and α = 3/(4β), where β = (cs/VA)
2 ∼ 10 gives α ∼ 0.075.

Bai & Stone (2011, ApJ, 736, 144) gave numerical evidence for α ≈ 0.5/β, too.

Once we know ν, there are theories (e.g., Shakura & Sunayev 1973) that let

one turn the crank to derive the accretion rate Ṁacc.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(C) Pinch Instabilities

Consider a cylinder of plasma with both axial (Bz) and azimuthal (Bφ) fields:
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In laboratory devices, the tension force from Bφ points inward to “pinch” (i.e.,
confine) plasma with high Pgas along the central axis. The ∇Pgas force points
outward to balance.

Lab plasma Bφ is generated by Jz, so the subsequent evolutions are often
called current-driven instabilities (CDI).

In astrophysics, helical-field “flux ropes” occur in many places:

Tayler (1957) first considered small perturbations in the cylindrical surface,

with ripples in the kφ direction.

Because the φ direction is bounded, there are resonances: eimφ with integer m:

Sausage mode (m = 0): Consider a cylinder dominated by an externally
imposed Bφ, with oscillations in radius.

If time variations are slow, volume is conserved, and Pgas remains constant.
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However, in the constricted regions, the overall J×B force (due to Bφ)
increases, and
∣∣∣∣
1

c
J×B

∣∣∣∣ (inward) > |∇Pgas| (outward) so constrictions keep constricting!

However, if there’s enough Bz threading the interior of the tube, there can be

extra outward ∇Pmag, and the above the sausage-mode instability is stabilized
for

Bz > Bφ/
√
2 .

Kink mode (m = 1): If the above cylinder undergoes lateral displacements,

field lines are compressed together on the concave side, and the external J×B
force (due to Bφ) increases.

Like above, constrictions keep constricting, and it’s a growing (kink-mode)

instability.

Like above, more Bz can inhibit the instability, this time because of the

tension due to the axial field.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(D) Resistive Instabilities

If there’s time, we’ll cover them when we discuss magnetic reconnection.

6.34


