
Statistical Mechanics & Kinetic Physics

We need to consider what’s going on with a collection of a large number of
particles. We’ll be applying the math of probabilities to gases, in which

particles are moving around randomly.

Outline: (A) Probabilistic motivations
(B) The 6D phase-space distribution function

(C) Time evolution: the Boltzmann/Vlasov equation
(D) Coulomb collisions

(A) Probabilistic Motivations

We will begin by thinking about the ideal gas, which is a gas of point-like
particles that carry only kinetic energy, and which tend to stay widely
separated from one another.

(“Real gases” have complications like molecular vibrations & Coulomb forces
that attract or repel when they get close.)

Thus, in an ideal gas, each particle has a mass m and a velocity v.
The direction of the velocity vector is random.

The magnitude of the velocity vector (v) is describable by its kinetic energy

E =
1

2
mv2 =

1

2
m

(
v2x + v2y + v2z

)
(i.e., ignore relativity, so p = mv).

We will use E for kinetic energy here, because for now it’s the only component
of energy that we’re considering for the ideal gas.

What’s the probability distribution of kinetic energy for a room-full of

particles of an ideal gas? In other words, if we pick out one random particle,
what are the chances of finding its kinetic energy E in some range of values?
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Although there are many forms the probability distribution can take, we’ll
start with the typical (non-relativistic, non-quantum) case of the equilibrium
Boltzmann distribution. We’ll discuss a few thought-experiments to help us

understand why it takes the form it does.

In 1869, Ludwig Boltzmann first formulated the distribution as a

proportionality, not an exact equality. The Boltzmann distribution is:

P(E) ∝ e−E/kBT where kB = Boltzmann’s constant ≈ 1.38× 10−23 J/K.

Here is where we introduce the concept of temperature T , and we’ll always use
units of Kelvins for it. The combination kBT is an energy.

For finite T , it’s more likely to find low-energy particles, and less likely to find

high-energy particles. T tells us how spread out the distribution is:

Why does the Boltzmann distribution look the way it does?

It may help to reduce it down to a smaller system: Let’s say we have 4

particles, which are able to “pass around” 4 bits of energy.

Suppose that all possible “ways” of distributing the bits among the 4 particles

are equally likely.

What’s the probability that a randomly chosen particle will have 0, 1, 2, 3, or

all 4 of those bits?
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Let’s go from high to low, and just count up the possible combinations:

• If the first particle has all 4 bits, there must be 0 in each of the others.
There is only 1 way to do this.

• If the first particle has 3 bits, that 1 remaining bit of energy can be in

any of the 3 other particles. Thus, 3 ways.

• If the first particle has 2 bits, there could be 2 in any one of the others
(3 ways), or 1 with none and 1-each in the other two (3 ways), thus

6 ways in all.

• We can count the rest by drawing them...

Thus, for 0/1/2/3/4 bits per particle, there are 15/10/6/3/1 ways:
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More ways = higher probability. Same shape as the Boltzmann distribution.

If we started with 8 energy-bits for just 4 particles, the curve would look like a
“higher-T” (more spread-out) version of the Boltzmann distribution.

In all cases, E = 0 is the most likely value for a particle’s energy, because that
allows the maximum number of arrangements for energy “bits” among the

other particles.

There’s another thought-experiment that may help one understand how the

Boltzmann distribution arises from random exchanges of energy between
particles (i.e., from collisions). I’ll just point you to the paper that describes
the “coconuts & islanders” story: https://arxiv.org/abs/1904.04669

(B) The 6D Phase-Space Distribution Function

In order to describe the physics of a gas, let’s define another quantity that is
related to the probability distribution:

The phase-space density (sometimes called the “single-particle distribution
function”) is written as:

f(r,p, t)

It’s kind of a complete description of the system, which contains the most

amount of information about a given species of particles that’s possible to
know (but still less detailed than if you were to follow the exact positions and

velocities of each particle vs. time.

What are the units of f? Consider a number of particles in a 6-dimensional
“box” that extends... 




from x to (x+ dx)

from y to (y + dy)
from z to (z + dz)

from px to (px + dpx)
from py to (py + dpy)

from pz to (pz + dpz)





The total number of particles in that box is defined as

N = f(r,p, t) dx dy dz dpx dpy dpz = f(r,p, t) d3r d3p
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d3r is a 3D volume of physical space.

d3p is a 3D volume of momentum space.
d3r d3p is a 6D “volume” of phase space.

In other words, if we call ∆V = d3r d3p, then

f(r,p, t) = lim
∆V→0

[
# of particles in ∆V

∆V

]
.

Notes:

• We should really say fs instead of just f ; each particle “species” s has its

own distribution function. For hydrogen plasma, s = p, e .

• Since much of this course’s dynamics is non-relativistic (p = mv), it’s
often equivalent to express f as a function of velocity space...

d3p = m3d3v

Of course, we should never forget that the gas/plasma is a collection of discrete
particles. Putting aside Heisenberg, an exact “grainy” expression for the

distribution function is

f(r,p, t) =

N∑

i=1

δ[r− ri(t)] δ[p− pi(t)]

with maybe a (2π)3 out front, depending on how the 3D delta functions are

normalized. The sum over i is over all N particles in the system.

Since N is usually bigger than Avogadro’s number, and there are typically still

>>> 1 particles even in the littlest boxes (d3r and d3p), it’s usually easier to
treat f as a continuous probability density.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This 6D phase space is kind of esoteric. Let’s try to process what it means.

For just 1 particle, it’s obvious that each of the 6 main parameters is
independent of the others:

x(t) , y(t) , z(t) , px(t) , py(t) , pz(t) .
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Now think about a small “parcel” of gas. Pick any pair of parameters:

We could do similar things with the other coordinates. If our brains were able
to visualize higher dimensions, we could plot > 3 of them versus one another.

The (x, y, z) position coordinates help us specify properties “here,” at a given
location in space. Very similar to how classical fields (say, potential energy)

depend on spatial position.

However, the (px, py, pz) momentum coordinates are, in a sense, random and

“microscopic,” so we don’t care about the details of which particle has which
value of py (i.e., vy), or whatever.

Typically, the things we measure come from integrating over the full

“volume” of momentum space. What’s left are quantities that depend on
(x, y, z) and on SOME statistical aspects of the distribution in (px, py, pz). Just

not the gory details.

These integrated quantities are called moments of f . . . .

0th moment: number density n(r, t) =

∫
d3p f(r,p, t)

Here, the units of n are (#/m3). It’s the number of particles per unit volume
(of 3D physical space). The mass density ρ is just mn (kg/m3).

Note that n is still a function of r (position) & time.
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Higher moments of f reveal more information. These are essentially weighted
averages of the form

〈φ(p)〉 =

∫
d3p φ(p) f(p)∫

d3p f(p)
=

1

n

∫
d3p φ(p) f(p)

where φ is any function of the three momentum coordinates px, py, and pz
(or, often, the magnitude p).

Thus, if φ = p, we get the 1st moment, or the mean momentum of the
“bulk flow,”

p0 = 〈p〉 more often, we use: u = 〈v〉

When we deal with a gas as a continuous FLUID, we won’t work with the
“microscopic” velocity v at all anymore; we will only squint our eyes to see the

bulk/centroid flow vector u.

The 2nd moment opens the door to thermodynamics... by measuring the
standard deviation about the mean, or the “width” of the distribution in

momentum or velocity space.




internal energy
temperature

pressure



 i.e., Ũ = 〈EK〉 ≈

〈
1

2
mv2

〉
≈

〈
p2

2m

〉

We’ll define these more precisely later.

The 3rd moment measures how f is skewed...

heat flux ∼ 〈p2p〉 (net flux of kinetic energy in a particular direction)

...and this feature of f(p) encodes transport phenomena such as heat
conduction, friction, viscosity, and electrical resistivity.
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The 4th moment measures the so-called “kurtosis” of f ... true departures
from classical equilibrium thermodynamics.

For an equilibrium (e.g., Maxwell-Boltzmann) distribution, we’ll have to deal

only with the 0th, 1st, and 2nd moments.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

By this point, it’s also now possible to define charge density & current density
rigorously in terms of f .

Consider multiple charged species s (ignore neutrals):

ρc =
∑

s

qsns =
∑

s

qs

∫
d3p fs (charge density)

J =
∑

s

qsnsus =
∑

s

qs

∫
d3p v fs (current density)

Thus, Maxwell + Lorentz + Vlasov = a complete description of a plasma !?

Usually, in a plasma (on scales much bigger than λD), ρc is usually ≈ 0.

However, J can often be 6= 0.

(C) Time evolution: the Boltzmann/Vlasov equation

How does f(t, r(t),p(t)) evolve in time?

Let’s derive a conservation equation for f . Essentially all other macro-scale
conservation laws are derived from it.

There are several ways to derive it. One straightforward way is to think about
how a small 6D box evolves from t0 to t1 ≡ t0 + dt.

Consider a bunch of particles of the same species, that all start out in the
nearby vicinity of position r0 and with velocity v0 (i.e., p0 = mv0).
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Let’s use subscript 0 for initial time; subscript 1 for final. If no particles are
created or destroyed, then the total # of particles “in the box” should be the
same at both times:

# = f(r0,p0, t) d
3r0 d

3p0 = f(r1,p1, t+ dt) d3r1 d
3p1

However, the box can move around in (r, p) space. In position space, the box

is pushed with velocity v, so that

r1(t+ dt) = r0(t) + v dt

and it’s pushed in momentum space by a net force (F = ma = dp/dt),

p1(t+ dt) = p0(t) + F dt

If the “forces” that push it around vary smoothly across the (tiny) box, then
the box may be be stretched or distorted, but it’s 6D volume won’t change.
Why? See 2D example:

This is an example of Liouville’s theorem in classical mechanics; see Bradt
& Olbert’s notes (on web) for a deeper set of proofs of why this is true.

When this applies,

d3r0 d
3p0 = d3r1 d

3p1 and thus f(r0,p0, t) = f(r1,p1, t+ dt) .

There’s another way to estimate f at the new time, based on what we know

about f at the old time. If the time step dt is tiny, then we can estimate f at
the new time by Taylor-expanding around the old time:

f(r1,p1, t+ dt) = f(r0,p0, t) +

(
df

dt

)

0

dt + · · ·

and, if no particles are created or destroyed, then

(
df

dt

)

0

= 0 .
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This isn’t just a simple 1D derivative, though. As t → t+ dt, both r and p
change, too. Thus, to compute it, we need to expand the total time derivative
of

f
(
t, x(t), y(t), z(t), px(t), py(t), pz(t)

)

via the chain rule...

df

dt
=

∂f

∂t
+

dx

dt︸︷︷︸
vx

∂f

∂x
+

dy

dt︸︷︷︸
vy

∂f

∂y
+

dz

dt︸︷︷︸
vz

∂f

∂z
+

dpx
dt︸︷︷︸
Fx

∂f

∂px
+

dpy
dt︸︷︷︸
Fy

∂f

∂py
+

dpz
dt︸︷︷︸
Fz

∂f

∂pz

(Newton’s law: F = ma = dp/dt)

The v terms involve transport in & out of a “physical box.”
The F terms involve acceleration/deceleration in & out of a “momentum box.”

If
df

dt
= 0 , Vlasov equation: particles are shuffled around in (r,v)

phase space, but no particles are created or destroyed.

If
df

dt
6= 0 ,

There are sources & sinks (ionization, recombination, dust

sublimation, Coulomb collisions); for just collisions, it’s the
Boltzmann equation.

Let’s write the Vlasov equation in vector form...

∂f

∂t
+ v · ∇f + F · ∇pf = 0 i.e.,

∂f

∂t
+ v · ∂f

∂r
+ F · ∂f

∂p
= 0

and keep in mind that F = ma is just any “external” applied force that

corresponds to an acceleration a, like gravity.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Later, we will take moments of the entire equation by multiplying each term
by a given variable and integrating each term over d3p.

Lecture 5: fluid/MHD moments:





0th: mass conservation
1st: momentum conservation
2nd: energy conservation
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(D) Coulomb Collisions

We now have to think more about how charged-particle collisions affect the
distribution function.

Ideally, no particles are created or destroyed in small-enough boxes in 6D
phase space (as long as we think of Lagrangian “moving boxes”).

However, collisions occur on micro-scales that we often wish to ignore.
On average, the inter-particle E&M forces are too random to be considered as

straightforward F terms in the Vlasov equation.

In practice, the f(r,v, t) that we consider is a smooth ensemble average over
a large number of trial samples (i.e., over lots of different realizations for the

“grainy” delta-function version of f).

Performing that ensemble average is a topic for a stat–mech course, but I’ll

show you one way that collisions defy our intuition.

For charged particles in a plasma, think about the following term in the Vlasov

equation:

F · ∂f
∂p

= q
(
E+

v

c
×B

)
· ∂f
∂p

and we’d like to work with “smooth” (ensemble-averaged) versions of the E

and B fields, too.

Unfortunately, the above term contains products of fields with f itself.

Maxwell’s equations say that E and B depend on both ρc and J; i.e., on
positions and trajectories of charged particles =⇒ F depends on f .

Thus, the above term is a product of two partially correlated quantities...

From our work on random walks, we thus know that
〈
F · ∂f

∂p

〉
6= 〈F〉 · ∂〈f〉

∂p

(they would be = only if they were independent & uncorrelated!)

LHS: the “true” ensemble average term that we want to know.

RHS: 〈F〉 represents smoothed E&M fields, and ∂〈f〉/∂p represents the
evolution of a smoothed distrib. function. We’d prefer to work with these.

4.11



Thus, we write 〈
F · ∂f

∂p

〉
= 〈F〉 · ∂〈f〉

∂p
− C(f)

where C(f) is a collision operator that accounts for the subtle correlations
that are strongest when charged particles fly by one another & interact

electromagnetically.

Leaving off the brackets for simplicity (assuming ensemble averages on each

term in the product), the collisional Boltzmann equation is written as

∂f

∂t
+ v · ∂f

∂r
+ F · ∂f

∂p
= C(f) where we often use C(f) ≡

(
∂f

∂t

)

coll

The big problem: how do we evaluate C(f)?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We’ll derive it “the right way” soon, but let me first prime your intuition by
showing a useful approximation:

Max Krook (Bhatnagar, Gross, & Krook 1954, Phys. Rev., 94, 511) worked out
the so-called BGK operator,

(
∂f

∂t

)

coll

≈ f0 − f

τ

where τ is a collisional relaxation timescale, and f0 is a “known” equilibrium
distribution.

In the absence of spatial gradients & external forces, the Boltzmann equation
has a simple analytic solution:

For f = finit at t = 0, f(p, t) = finit(p) e
−t/τ + f0(p)

(
1− e−t/τ

)

i.e., f rapidly relaxes from finit to f0.

Downside: you need to know f0 a-priori.

For many plasmas, f0 will have a Maxwellian shape, but the values of its
parameters (n, u, T ) may not be known.
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Examples:

Later, we’ll use the BGK operator to derive reasonable values for the plasma

transport coefficients. For now, we should move on to the full Boltzmann
collision operator.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The collision operator is really both a source & a sink term.

When collisions occur, some particles inside the 6D “box” (d3r d3p) may be
scattered out of the box, and some other particles may be scattered into it. For

bookkeeping’s sake, define:
(
∂f1
∂t

)

coll

= Cin(f1, f2) − Cout(f1, f2)

where we now must add subscripts. We follow particles of type 1, and our goal

is to figure out how they interact with “target” particles of type 2.

Cin and Cout are rates that describe how rapidly f gets altered (per second).

Formally, our Boltzmann equation looks like

∂f1
∂t

+ v1 ·
∂f1
∂r1

+ F1 ·
∂f1
∂p1

= Cin(f1, f2) − Cout(f1, f2) .
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I often find it easier to do the “bookkeeping” when there are finite numbers
of events. Thus, like before, let’s deal with a specific time-span ∆t.

Recalling how f is defined, we can state clearly that the absolute numbers of

particles (of type 1) that are scattered in/out of the 6D box are

Nin = Cin d3r1 d3p1 ∆t

Nout = Cout d3r1 d3p1 ∆t

Notation: Collisions result in an ∼abrupt change to the particle trajectories.
Thus, for the INCOMING trajectories, we will use v1 and v2

(i.e., p1 = m1v1, etc) in the inertial frame.

After the collision, for the OUTGOING trajectories, we will use v′
1 and v′

2.

Collisions occur when particles of type 1 & 2 share the same physical space, so

r1 = r2 = r′1 = r′2 ≡ r d3r1 = d3r2 = d3r′1 = d3r′2 ≡ d3r .

How do we actually specify Nin and Nout?

Start with Nout. How many particles are scattered out of a tiny box of 6D

phase space over time-span ∆t?

Somewhere inside that box, EACH of the particle 1’s that enters will undergo

a collision with EACH of the particle 2’s that are present in the box. Thus,

Nout = N1,enterN2 .

In other words, every pairwise collision removes a particle 1 from its little d3p1

region of momentum space, and also removes a particle 2 from its little d3p2

region of momentum space,

It’s relatively easy to specify the number of “targets” in the volume:

N2 = f2(r,v2, t) d
3r d3p2

What about particle 1’s? We could compute N1 the same way, but that just

gives us the number of 1’s that happen to be nearby at some infinitesimal

instant of time. Not what we want!
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Because the 1’s and 2’s are streaming past one another, we really want to know
how many 1’s ENTER the “front face” of the volume element over a (longer?)
time span ∆t.

For that, let’s consider the same cylindrical area element we used before when
discussing Coulomb collisions:

We draw the picture in a frame in which the type-2 targets are stationary, and
the particle 1’s are incoming. However, we still must keep in mind that

particle 1’s have v1 in the inertial frame, particle 2’s have v2, etc.

We want to know how many collisions occur in a little volume element

d3r = dz dA = dz (b db dφ)

But, to figure out N1,enter, we note that the length of the cylinder is defined by
the finite time-span ∆t, and

dz = |v|∆t = |v1 − v2|∆t

and thus,

N1,enter = f1(r,p1, t) d
3r d3p1 = f1(r,p1, t) |v1 − v2| d3p1 (b db dφ) ∆t .

Thus,

Nout = N1,enterN2

= f1(r,p1, t) f2(r,p2, t) |v1 − v2| d3p1 d
3p2 d3r (b db dφ) ∆t .

Note this number is symmetric: swap 1 ↔ 2 and it doesn’t change. Good!

Also, as ∆t increases, so does Nout. That also makes sense!
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Thus, to obtain Cout, we divide Nout by (d3r d3p1 ∆t).

We also must acknowledge that, from species 1’s standpoint, there’s really a
whole range of targets at this location... i.e., to account for them all we must
integrate over all available values of p2, b, φ.

Cout(f1, f2) =

∫
d3p2

∫
db b

∫
dφ f1 f2 |v1 − v2|

We simplify the notation by assuming f1 is a function of p1, and f2 is a

function of p2.

Of course, in a mixture of many types of charged particles,

Cout =
∑

s

Cout(f1, fs) where s = 1 is also in the sum!

but let’s just consider one species of 2’s at a time.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To obtain Nin, the number of particles scattered INTO the volume element
over time ∆t, we reverse the roles of initial and final velocities.

Incoming: v′
1 and v′

2 Outgoing: v1 and v2

Nin = f1(r,p
′
1, t) f2(r,p

′
2, t) |v′

1 − v′
2| d3p′

1 d
3p′

2 d
3r (b′ db′ dφ′) ∆t .

For elastic collisions, their paths are symmetric:





|v1 − v2| = |v′
1 − v′

2|
b = b′

φ = φ′





See cartoon:
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In homework, you may have to work out how the volume element products are
equal (no matter the reference frame) before & after the collision:

d3v1 d3v2 = d3U d3v = d3U′ d3v′ = d3v′
1 d3v′

2 .

Thus, we can drop almost all of the primes, and write

Cin(f1, f2) =

∫
d3p2

∫
db b

∫
dφ f1(r,v

′
1, t) f2(r,v

′
2, t) |v1 − v2| .

and the full collision operator is

(
∂f1
∂t

)

coll,2

=

∫
d3p2

∫
db b

∫
dφ |v1 − v2| (f ′

1 f
′
2 − f1 f2) .

Let’s clarify:

• The left side of the Boltzmann equation follows f1 through phase space, so
the collision operator also specifies just one specific value of p1.

• The collision operator integrates over all possible values of the “target”
momentum-space p2.

• For each collision (i.e., each pair of p1 and p2), the collision operator also

integrates over the full range of possible geometries for the collision (i.e.,
b and φ), too.

• For each UNIQUE collision (i.e., each set of p1, p2, b, φ), everything is

deterministic. There’s a unique “outgoing” set of p′
1 & p′

2 values, and the
quantity f ′

1f
′
2 is evaluated at those values.

Some books define a differential scattering cross section,

σ =

∣∣∣∣
b db dφ

dΩ

∣∣∣∣ =

∣∣∣∣
b db dφ

sinχ dχ dφ

∣∣∣∣

for which particles passing through the (b, φ) volume element are scattered into
a solid angle element dΩ, and the db integral can be turned into a dχ integral.

We haven’t thought too much about this χ angle, but it’s just the angular

separation between v & v′. For small-angle scattering, ∆v⊥/v0 ≈ tanχ ≈ χ.
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Because χ ↑ as b ↓, one would get σ < 0 unless one takes the absolute value,
as above (for physical realism). It’s possible to show that

tan
(χ
2

)
=

bmin

2b

(
where recall that bmin =

2|q1q2|
m12|v1 − v2|2

)

and thus,

σ =
b2min

16 sin4(χ/2)
.

Note that for b = bmin, χ ≈ 53.1◦, and for b = bmin/2, χ = 90◦.
We could have used bmin/2 = b90 in the denominator of Λ, and lnΛ would

hardly be much different.

Also, note that b db dφ = b′ db′ dφ′ , implies σ(Ω) dΩ = σ(Ω′) dΩ′ .

What will we do with the full Boltzmann collision term? The remainder of
these notes provide the outlines of 4 derivations:

(a) Prove that collisions obey known conservation laws.

(b) In equilibrium, show that collisions drive us to a Maxwellian distribution.

(c) When dominated by many small-angle scatterings, show that the collision
term turns into advection & diffusion in momentum space (i.e., the

Fokker–Planck equation).

(d) Explore (qualitatively) how the system evolves when we start with an
OUT-of-equilibrium situation.
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(a) Conservation laws

One thing we’ll do a lot later is take moments over each term in the
Vlasov/Boltzmann equation, often weighted by specific functions of p1 or v1.

Consider this kind of weighted moment of the collision operator,

M12(Ψ) =

∫
d3p1 Ψ(p1)

(
∂f1
∂t

)

coll,2

and we’ll eventually use

Ψ(pi) =





mi for mass conservation

mivi for momentum conservation
1
2mi|vi|2 for energy conservation



 i = 1 or 2 .

Let’s write out the standard version of the moment and call it

M12 =

∫
d3p1

∫
d3p2

∫
dΩ σ(Ω) |v1 − v2| (f ′

1 f
′
2 − f1 f2) Ψ(p1)

Alternately, we saw that if we swapped the un-primed (initial) and primed

(final) variables, we can make use of properties of elastic collisions to simplify.
Thus,

M ′
12 =

∫
d3p′

1

∫
d3p′

2

∫
dΩ′ σ(Ω′) |v′

1 − v′
2| (f1 f2 − f ′

1 f
′
2) Ψ(p′

1)

=

∫
d3p1

∫
d3p2

∫
dΩ σ(Ω) |v1 − v2| (f1 f2 − f ′

1 f
′
2) Ψ(p′

1)

The trick is to notice that

M12 = M ′
12 =

M12 +M ′
12

2

and thus,

M12(Ψ) =

∫
d3p1

∫
d3p2

∫
dΩ σ(Ω) |v1 − v2| (f ′

1 f
′
2 − f1 f2)

[
Ψ(p1)−Ψ(p′

1)

2

]

This may seem a bit convoluted, but note that, for Ψ(p1) = m1, we know that
the particle’s mass is unchanged before and after the collision, so we know

Ψ(p1)−Ψ(p′
1) = 0 and thus

∫
d3p1

(
∂f1
∂t

)

coll,2

= 0
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i.e., the zeroth moment of the Boltzmann collision operator vanishes, which
means that collisions do not create or destroy mass (M12 = 0 for mass).

Consider Ψ(p1) = m1v1 (momentum of particle 1). We know that v1 6= v′
1, so

the weighted moment M12 does not vanish in this case.

This means that collisions CAN provide a net, macro-scale source (if M12 > 0)

or sink (if M12 < 0) of momentum to a population of particles. Think back to
Brownian motion. The big pollen grain can be slowed down by the smaller

molecules.

We can understand what’s going on by swapping the 1 and 2 indices. This
gives us a weighted moment over the Boltzmann equation for species 2, when

those particles are colliding with “target” particles of type 1:

M21(Ψ) =

∫
d3p2 Ψ(p2)

(
∂f2
∂t

)

coll,1

Thus,

M21 =

∫
d3p1

∫
d3p2

∫
dΩ σ(Ω) |v1 − v2| (f ′

1 f
′
2 − f1 f2) Ψ(p2)

As above, we can also swap the primes and unprimes to obtain M ′
21.

I won’t show the details, but if we construct the sum

M12 + M ′
12 + M21 + M ′

21

we can write it as the standard integral above, with integrand

[Ψ(p1) − Ψ(p′
1) + Ψ(p2) − Ψ(p′

2)]

However, we do know that the total momentum is conserved in a binary
elastic collision. Remembering that Ψ(pi) = mivi, we know that

Ψ(p1) + Ψ(p2) = Ψ(p′
1) + Ψ(p′

2)

so
M12 + M ′

12 + M21 + M ′
21 = 0 .
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We already know that M12 = M ′
12, and presumably it’s clear also that

M21 = M ′
21. Thus,

M12 = −M21 i.e.,

∫
d3p1 m1v1

(
∂f1
∂t

)

coll,2

= −
∫

d3p2 m2v2

(
∂f2
∂t

)

coll,1

i.e., the rate at which particles of type 1 gain momentum due to collisions with

particles of type 2 is equal to the rate at which particles of type 2 lose
momentum due to collisions with particles of type 1. Collisions conserve

momentum.

You can show that the above is true for kinetic energy, too.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Equilibrium

There are a number of different statistical theorems that can be proved (e.g.,
Boltzmann’s H theorem, which is related to entropy and the 2nd law of
thermodynamics), but there’s a more straightforward way to see where this is

all going.

In a homogeneous system (∇f = 0) with no forces acting on it (F = 0), the

Boltzmann equation reduces to

∂f1
∂t

=

(
∂f1
∂t

)

coll,2

=

∫
d3p2

∫
db b

∫
dφ |v1 − v2| (f ′

1 f
′
2 − f1 f2)

and if we ultimately reach a time-steady equilibrium, then both sides = 0.

One way to make the collision term vanish is to find a distribution that obeys

a “detailed balance” condition,

f ′
1 f

′
2 − f1 f2 = 0 i.e., f1(p1) f2(p2) = f1(p

′
1) f2(p

′
2) .

• LHS: depends only on conditions before the collision.
• RHS: depends only on conditions after the collision.

It’s equivalent to write this as

ln f1 + ln f2 = ln f ′
1 + ln f ′

2 .

Note that, in equilibrium, the sum over each particle’s ln f must be the same
before and after each collision.

4.21



Thus, the total (ln f) behaves like a collisional invariant (e.g., like total
mass, total momentum, or total kinetic energy)!

Let’s remember what those were. For elastic collisions:

m1 +m2 = m′
1 +m′

2 (duh)

p1 + p2 = p′
1 + p′

2 (less trivial)

(p1)
2/2m1 + (p2)

2/2m2 = (p′1)
2/2m1 + (p′2)

2/2m2 (see earlier lectures)

Collisional invariants aren’t easy to find. Is the above an exhaustive list?

Maybe (ln f) isn’t a brand new invariant. Let’s investigate what it implies if

(ln f) is, in fact, merely a linear combination of the existing invariants.

That ansatz actually works. Assume one can write

ln fi = c1mi + c2 · pi + c3
p2i
2mi

where we must note that c2 is a vector because we need to fold in momentum

but still have the final result be a scalar.

This is just a concrete application of the “method of Lagrange multipliers.”

The linear and quadratic terms can be combined into a single term (with some
algebraic “completing the square”), with

ln f = c̃1 + c̃2 (p− p0)
2

and the constants can be redefined to obtain the equilibrium (i.e.,
Maxwell-Boltzmann) form of the distribution,

f(p) = ec̃1 ec̃2(p−p0)
2 ∝ exp

[
− 1

2mkBT
(p− p0)

2

]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(c) Fokker–Planck Equation

Recall the weighted moment over the collision operator. It’s the sum of two
terms: M12 = M12,in +M12,out

M12,in = +

∫
d3p1

∫
d3p2

∫
dΩ σ(Ω) |v1 − v2| f ′

1 f
′
2 Ψ(p1)

M12,out = −
∫

d3p1

∫
d3p2

∫
dΩ σ(Ω) |v1 − v2| f1 f2 Ψ(p1)

no matter what the Ψ function represents.

Also remember that the first term can also be written as

M ′
12,in = +

∫
d3p1

∫
d3p2

∫
dΩ σ(Ω) |v1 − v2| f1 f2 Ψ(p′

1)

Thus, another way to write the full moment is

M̃12 = M ′
12,in + M12,out

=

∫
d3p1

∫
d3p2

∫
dΩ σ(Ω) |v1 − v2| f1 f2

[
Ψ(p′

1)−Ψ(p1)
]
.

Now we’re (finally!) going to express the primed quantities in terms of

the unprimed quantities.

Let’s limit ourselves to just weak, small-angle scattering: v′
1 = v1 +∆v,

and because ∆v is small in comparison to v1, we can expand
Ψ(v′

1) = Ψ(v1 +∆v) in a Taylor series about the initial velocity v1

Ψ(v1 +∆v) = Ψ(v1) +

(
∂Ψ

∂v

)

v1

·∆v +
1

2

(
∂2Ψ

∂v∂v

)

v1

: ∆v∆v + · · ·

and to be clear,
(
∂Ψ

∂v

)
·∆v =

∑

i

∂Ψ

∂vi
∆vi (3 terms in sum)

(
∂2Ψ

∂v∂v

)
: ∆v∆v =

∑

i,j

∂2Ψ

∂vi∂vj
∆vi∆vj (9 terms in sum)

4.23



Traditionally we neglect all higher-order terms, mainly because we focus on
weak collisions, for which ∆v is a small parameter, and we see that

M̃12 =

∫
d3p1

∫
d3p2

∫
dΩ σ(Ω) |v1 − v2| f1 f2 ×

×
[(

∂Ψ

∂v

)

v1

·∆v +
1

2

(
∂2Ψ

∂v∂v

)

v1

: ∆v∆v

]

If we can manipulate this integrand to get it into a form like...

M̃12 =

∫
d3p1 Ψ(p1) {something}

then we would have a usable expression for
(
∂f1
∂t

)

coll,2

= {something} (with no primes!)

This can be done with integration by parts. (Once for 1st order terms,
twice for 2nd order terms.)

Let’s not work out the math for all 12 terms in class, but the upshot is to
realize that ∫

dvi f1
∂Ψ

∂vi
= [f1Ψ] −

∫
dvi Ψ

∂f1
∂vi

and if we integrate over all velocity space, the [f1Ψ] term vanishes because
f1 → 0 in the limit of vi → ±∞.

The end result is the Fokker–Planck equation:

(
∂f1
∂t

)

coll,2

= −
∑

i

∂

∂vi

(
f1〈〈∆vi〉〉

)
+

1

2

∑

i,j

∂2

∂vi∂vj

(
f1〈〈∆vi∆vj〉〉

)

where
{

〈〈∆vi〉〉
〈〈∆vi∆vj〉〉

}
=

∫
d3p2

∫
dΩ σ(Ω) |v1 − v2| f2(p2)

{
∆vi

∆vi∆vj

}
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Units of these coefficients:

• 〈〈∆vi〉〉 = v/t : i.e., acceleration (the minus sign on the term means
deceleration), or “advection” in velocity space. This term provides
dynamic friction.

• 〈〈∆vi∆vj〉〉 = v2/t : analogous to ℓ2/t spatial diffusion coefficients. This
term provides diffusion in velocity space.

When the advection & diffusion coefficients are known, the Boltzmann

equation becomes “just” a differential equation, which is easier to deal with
than an integro-differential equation.

(Exact solutions of F–P equation for cosmic rays: arXiv:1703.02554)

In equilibrium, the collision term (∂f1/∂t)coll,2 → 0, so the advection/friction
term must balance the diffusion term. Here’s the fluctuation–dissipation

theorem again!

Heuristically, we should know that “pure” diffusion would never let us reach a

time-steady equilibrium: it just keeps diffusing out and out, to ever higher
temperatures! The dynamical friction keeps that from happening.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that the Fokker–Planck coefficients 〈〈∆vi〉〉 and 〈〈∆vi∆vj〉〉 are valid for
ANY kind of binary collisions. We’ve spent a lot of time thinking about one

specific kind: Coulomb collisions (i.e., mediated by electrostatic
attraction/repulsion).

In that case, we know σ(Ω) and can do that integral, while still not specifying
f(p). The result is

〈〈∆vi〉〉 =

(
4πq21q

2
2 ln Λ

m1m12

)
∂H

∂vi
, 〈〈∆vi∆vj〉〉 =

(
4πq21q

2
2 lnΛ

m2
1

)
∂2G

∂vi∂vj

where G and H are the Rosenbluth potentials:

H(v1) =

∫
d3p2

f2(p2)

|v1 − v2|
, G(v1) =

∫
d3p2 f2(p2) |v1 − v2| .

and the ∂/∂vi derivatives are taken with respect to v1 .
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(d) Non-Equilibrium Evolution

We’ve seen that if all species are Maxwellians, and they’re in thermal
equilibrium with one another (i.e., T1 = T2, u1 = u2), then

(
∂f1
∂t

)

coll,2

= 0 .

Thus, whenever we think about non-zero collision terms, we must be dealing

with an OUT-of-equilibrium situation.

Let us think briefly about 3 sub-cases where we “initialize” the system with

some non-equilibrium-ness...

d1. Energetic particles: species 1 is a single “test particle” zooming in to

interact with a Maxwellian distribution of species 2’s.

d2. Transport coefficients: these are self-collisions (i.e., species 1 is the
same as species 2) with initially non-Maxwellian distribution.

d3. Multi-fluid equilibration: start with Maxwellians (for species 1 6=
species 2), each with different temperatures or bulk flow speeds.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d1) Test particles:

This situation is close to the idealized Coulomb scattering problem we

examined earlier. Just replace the single “particle 2” by a distribution.

Recall that thinking about particle–particle scattering in the frame of the

target led us to a “cylinder model” for the total slowing-down rate,

〈∆v‖〉
∆t

= n2 v0

∫
dφ

∫
db b ∆v‖

where ∆v‖ is a function of b, v0, and charges & masses of the particles.

For a distribution of targets, we simply need to

replace n2 v0 by

∫
d3p2 f(p2) |v1 − v2|

and you can verify that if f(p2) was a delta function, we’d recover our earlier
result.
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Heuristically, now we can reinterpret:

• “Slowing down” means that 〈v1〉 will relax to u2, the mean/centroid of
f(p2) (assuming v1 is larger).

• “Perpendicular diffusion” means that 〈|v1|2〉1/2 will come into equilbrium

with vth,2, the r.m.s. thermal spread of f(p2).

• There is also now a (slower) “parallel diffusion” (i.e., 〈|∆v‖|2〉 6= 0), even
though this didn’t happen in the particle–particle scattering problem.

Probability distribution of v1 values evolves from an initial δ function to...

If f(p2) is Maxwellian, one can straightforwardly turn the crank on the d3p2

integral. I won’t go through it; just compare the new result with the old result:

OLD:
dv‖1
dt

= −νS1
(
v‖1 − v‖2

)
where νS1 =

4π q21 q
2
2 n2 ln Λ

m1m12 |v1 − v2|3
.

NEW:
dv‖1
dt

= −2νS1 vth,2G(x) where νS1 =
4π q21 q

2
2 n2 ln Λ

m1m12 v3th,2
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where also,

vth,2 =

√
2kBT2

m2
, x =

|v1 − u2|
vth,2

, G(x) =
1

2x2

[
erf(x) − 2x√

π
e−x2

]

G(x) is the Chandrasekhar (1943, ApJ, 97, 255) function:

small x: G(x) ≈ 2x

3
√
π

large x: G(x) ≈ 1

2x2

Thus, for small relative motions (i.e., |v1 − u2| ≪ vth,2), the evolution of
parallel speed is friction-like.

However, if |v1 − u2| ≫ vth,2, the test particle zips through so fast that the
frictional force rapidly declines to zero. This is called Coulomb runaway.

The ‖ and ⊥ diffusion equations contain comparable RHS functions that
behave differently in the two above limits.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(d2) Transport coefficients:

Can large-scale gradients maintain (i.e., feed) a non-Maxwellian distribution?
Yes, but only if there exist “self-collisions” (i.e., particles of a given species

colliding with one another).

For this course, these effects are under the umbrella of “resistive MHD.” Thus,

we’ll come back to it after talking about “ideal MHD.”

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d3) Multi-fluid equilibration:

How does the collision operator show up in multi-species fluid equations?

We’ll have to come back to this one later, too, once we’ve introduced the

multi-species fluid equations.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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