
ASTR–5120: Radiative & Dynamical Processes . . . . . . . . . . . Fall 2021

You’re getting three (or four?) courses in one:

• Astrophysical Plasmas: focusing on two aspects...

– Collisions & transport phenomena: understanding how charged

particles interact with one another on micro-scales to produce
macro-effects like conductivity & viscosity.

– Magnetohydrodynamics (MHD): an approximate fluid description

of a magnetized plasma (ubiquitous in space) and some liquid
conductors (e.g., molten planetary interiors).

• Gravitational Dynamics: the study of how mutually gravitating bodies
interact... from 2-body Keplerian motion to (N ≫ 1)-body galaxies.

• Radiative Processes: treating a collection of photons as something as
continuous and “fluid” as a collection of particles, and solving for how the

radiation field interacts with matter.

Our (my?) challenge is to show how these fields are unified by some

fundamental physical processes.

Lots of our time will be spent separating these processes into:

• Macroscopic physics (continuous, classical “forces and fields”), vs.

• Microscopic physics (statistics of many individual random events).

The bridge between the worlds is typically described by transport

phenomena, in which we also must distinguish between

• Collisionless systems (where particles don’t interact with one another;

only with large-scale forces/fields), vs.

• Collisional systems (where particles do interact with one another).

Examples of ‘particles:” ions, electrons, neutral atoms, photons, ice/dust
grains, planetesimals, stars, dark matter particles?

We’ll start with some introductory background/review.

Syllabus review... These lecture notes are the main “textbook.” Please read

everything, even if we skip some parts in class.
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Background/Review Topic 1 of 2: Differential Equations

I’ll assume you’re relatively comfortable with ordinary differential equations
(ODEs). Knowing the integrating factor method for first-order ODEs should

certainly be in your toolbox (see the useful–formula handout).

There are a number of classical partial differential equations (PDEs) that show

up frequently enough for us to review them at the beginning of this course.
Let’s review three of them:

(1a) The Advection/Transport Equation

Baked into many conservation laws are expressions that look like

∂f

∂t
+∇ · (vf) = 0

for some continuous function f(r, t).

In some cases (i.e., an incompressible fluid), the flow velocity v obeys

∇ · v = 0 ,

and in that case,
∂f

∂t
+ v · ∇f ≡ Df

Dt
= 0

i.e., f = constant along the flow path.
Df/Dt is the advective derivative (sometimes called the convective,

material, substantial, total, Lagrangian, Stokes, etc. ... derivative)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Before we move on, let’s just pause to think about what the advective
derivative really means. Consider an example in which we’re sitting in a
meadow, looking at the trees. Define f as the density of trees at any point in

the meadow.

If we’re just sitting still, the trees are (slooooowly) growing where they stand.

Nothing is moving around in space. Thus, f = f(t) only, and the total
derivative

Df

Dt
=

∂f

∂t
is just the partial derivative with respect to time.
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However, what if we’re in a boat on a river, drifting along the x direction, and
the trees are getting denser/thicker as we go down river. In our reference
frame, f = f(t, x), and x itself is a function of time.

f = f(t, x(t)) ,
Df

Dt
=

∂f

∂t
+

dx

dt︸︷︷︸
vx

∂f

∂x
(chain rule!)

If f increases as x increases, then ∂f/∂x > 0. We see the summed effect of 2

kinds of “increase” in tree density: in time, and in space.

In general, if we’re looking at a little “fluid parcel” (that’s evolving in time
AND moving around in space with velocity v), the total change in some

quantity f associated with the parcel (density, temperature, etc.) is given by

Df

Dt
=

∂f

∂t
+ v · ∇f

Remember that ∂f/∂t is just the change in the local value of f at a fixed

location, as multiple parcels move through it. But often we want to track
what’s going on with one parcel as it moves, and for this we want Df/Dt.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Back to PDEs. The 1D Cartesian version of the advection equation is

∂f

∂t
+ vx

∂f

∂x
= 0 with initial condition f(x, t) = f0(x) at t = 0.

and for now let’s assume vx = constant.

D’Alembert showed that the solution to the advection equation is

f(x, t) = f0(x− vxt) (i.e., a pulse moving with speed vx)

where f0 can essentially be any well-behaved function of one variable.
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It’s easy to verify that this satisfies the equation, with the chain rule.

However, there’s also a rigorous way to obtain this solution, using Fourier
transforms. It’s overkill for this particular equation, but it generalizes to much

more complicated PDEs.

Joseph Fourier himself worked this out [for the heat equation] around 1801,

while deployed in Egypt in Napoleon’s army.

For a continuous function f(x), define the Fourier transform and inverse

Fourier transform:

g(k) =

∫ +∞

−∞
dx f(x) eikx

f(x) =
1

2π

∫ +∞

−∞
dk g(k) e−ikx

Take the advection equation PDE, multiply each term by eikx, and integrate
over all x,

∫ +∞

−∞
dx eikx

(
∂f

∂t
+ vx

∂f

∂x

)

= 0

∂

∂t

∫ +∞

−∞
dx eikx f + vx

∫ +∞

−∞
dx eikx

∂f

∂x
= 0

1st term on LHS: This is just ∂g/∂t.

2nd term on LHS: As long as f(x) → 0 as x → ±∞, it can be evaluated by
integration by parts.

The transformed equation becomes:

∂g

∂t
− ikvxg = 0

which shows why Fourier transforms are useful for “converting” derivatives
into products. This is just a 1st order ODE in time,

g(k, t) = g0(k) e
ikvxt .

To get the desired solution f(x, t), we perform the inverse transform,
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f(x, t) =
1

2π

∫ +∞

−∞
dk g0(k) e

−ik(x−vxt) (“full solution”) .

It’s clear that g0(k) is just the Fourier transform of the initial condition
f0(x) = f(x, 0), i.e.,

f0(x) =
1

2π

∫ +∞

−∞
dk g0(k) e

−ikx

Thus, if we take the full solution above, and substitute ξ = x− vxt, we see that
the full solution is just the inverse transform

f(x, t) = f0(ξ) = f0(x− vxt)

just as Fourier and D’Alembert found.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If the above was hand-wavy, I should note that we can do it more rigorously.

The full solution contains g0(k), which is the transform of the initial condition.
Plugging that in directly,

f(x, t) =
1

2π

∫ +∞

−∞
dk e−ik(x−vxt)

[∫ +∞

−∞
dx′ f0(x

′) eikx
′

]

=
1

2π

∫ +∞

−∞
dx′ f0(x

′)

[∫ +∞

−∞
dk e−ik(x−x′−vxt)

]

This is helpful only if you’ve seen that the Fourier transform of a constant

function is the Dirac delta function (and vice versa); i.e.,

δ(x) =
1

2π

∫ +∞

−∞
dk e−ikx .

Thus, our full solution is

f(x, t) =

∫ +∞

−∞
dx′ f0(x

′) δ(x− x′ − vxt)

= f0(x− vxt) .
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(1b) The Wave Equation

I’m sure you’ve seen it before. It’s kind of similar to the advection equation,
since solutions “propagate” in space. In 1D,

∂2f

∂t2
= c2

∂2f

∂x2
again assuming c = constant .

D’Alembert also showed there are pulse-propagating solutions. If we define

α = x+ ct β = x− ct

then one can transform the wave equation into
∂2f

∂α ∂β
= 0

which can be integrated twice to obtain

f(x, t) = A(α) +B(β) = A(x+ ct) +B(x− ct)

meaning that waves can propagate to the left or the right, depending on the
initial condition.

We could’ve also used the Fourier transform method to obtain this solution.

Alternately, one can look for separable solutions of the form

f(x, t) = X(x)T (t). Those are sinusoids: exp [ i(kx± ωt) ], with c = |ω/k|.

(1c) The Diffusion Equation

Also called the heat equation, or Fick’s law(s) of diffusion. In general,

∂f

∂t
= ∇ · [D(r)∇f ]

but if D = constant and we limit ourselves to 1D Cartesian geometry,

∂f

∂t
= D

∂2f

∂x2

where D is the diffusion coefficient (units of length2/time). It shows up in a
lot of physical contexts!

The Fourier transform method gives us an elegant solution; equivalent in many
ways to a Green’s function solution. Let’s derive it.
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Taking the transform of each term like before,

∂g

∂t
− D

∫ +∞

−∞
dx eikx

∂2f

∂x2
= 0 .

To evaluate the 2nd term, one needs to perform integration by parts twice,

and assume both f and ∂f/∂x both → 0 as |x| → ∞. Thus,

∂g

∂t
+ k2Dg = 0

which is essentially the same ODE (in time!) as before, with the solution

g(k, t) = g0(k) e
−k2Dt .

Remember that g0(k) is the Fourier transform of the initial condition f0(x), so
take the inverse transform...

f(x, t) =
1

2π

∫ +∞

−∞
dk e−ikx g0(k) e

−k2Dt

=
1

2π

∫ +∞

−∞
dk e−ikx−k2Dt

[∫ +∞

−∞
dx′ f0(x

′) eikx
′

]

=
1

2π

∫ +∞

−∞
dx′ f0(x

′)

[∫ +∞

−∞
dk e−k2Dt+ik(x′−x)

]

.

As long as D > 0, the final integral in square brackets is well-behaved. It can

be looked up, or one can “complete the square” of the quadratic function of k
in the exponent...

−k2Dt + ik(x′ − x) = −Dt(k − k0)
2 − (x− x′)2

4Dt

where k0 is just a function of other “constants” (i.e., anything except k). Thus,

f(x, t) =

∫ +∞

−∞
dx′ f0(x

′)

{
1√
4πDt

exp

[

−(x− x′)2

4Dt

]}

.

The quantity in {} is a “kernel” that plays the same role as the Green’s
function.
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If f0(x
′) = δ(x′), then

f(x, t) =
1√
4πDt

exp

[

− x2

4Dt

]

,

which is a normal distribution with σ =
√
2Dt.

Example solutions (D = 1) for a delta function & an arbitrary f0(x):

As t → ∞, f(x, t) “wants” to diffuse to a constant value.

If x subtends all space, then f → 0 .

Despite looking like a hybrid of the advection & wave equations, the diffusion
equation has solutions that exhibit some very different properties:

1. There’s a clear directionality of time to the solution; initial structure is
irreversibly smeared out as t marches on.

2. Formally, diffusion happens at infinite speed. If one starts with a delta

function at t = 0, then at any t > 0 there is a finite value of f(x, t) at all
values of x. This is unrealistic; resolving it requires a closer look at the
underlying physics.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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It’s worthwhile to look at moments (or expectation values) of this
solution... i.e., averages taken over all x, weighted over both f(x, t) (which acts
like a probability distribution) and over some other functions of x.

The mean value of x at a given time t is given by

〈x〉 ≡
∫
dx x f(x, t)
∫
dx f(x, t)

.

For the version of f obtained from a Dirac δ function initial condition, the

denominator is normalized to 1.

The numerator is an odd function... so 〈x〉 = 0. Thus, pure diffusion always

maintains the initial “center of gravity” of a distribution.

What about the mean value of x2 ?

〈x2〉 =

∫

dx x2 f(x, t) =
1√
4πDt

∫ +∞

−∞
dx x2 e−x2/(4Dt) = ❀ = 2Dt

and we see that 2Dt is essentially σ2 (i.e., the variance, or the square of the

standard deviation) of this normal distribution.

Thus, for classical diffusion the r.m.s. “width” of the distribution increases as

σ ∝ t1/2 .

FYI, there are non-classical “disordered” systems for which the diffusion is

“anomalous:”

σ ∝ tα
{

α > 1/2 superdiffusion
α < 1/2 subdiffusion

}

In some cases (e.g., fractal media), α corresponds to something real. Other
times, it’s just an empirical fitting parameter, and the actual physics is more

complicated than “just” a modified type of diffusion.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In 3D, the diffusion equation is
∂f

∂t
= D

(
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2

)

and it’s straightforward to show that

〈r2〉 = 〈x2〉+ 〈y2〉+ 〈z2〉 = 6Dt .
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Background/Review Topic 2 of 2: Classical Forces/Fields

We’ll concentrate only on two of the four fundamental forces of the Standard
Model: electromagnetism & gravity.

E&M:

I’ll be using Gaussian/c.g.s. units (“astronomer’s units”) as a default. Why?

• We need to stay connected to our history... I’ll try to cite relevant

milestone papers (all of which likely used cgs), and you’re encouraged to
always follow the bread crumbs back into the literature.

• E and B essentially have the same units.

• Electric charges are “natural” (Coulomb force: F = q1q2/r
2).

Whenever we deal with E&M, we’ll also be thinking about plasmas.

Plasmas are not really a “vacuum” because they’re filled with particles.
However, we’ll use the vacuum E&M equations and treat the particles as

discrete, point-like “add-on” sources of charge.

Thus, forget D and H. Just electric field E and magnetic field B.

If you know E and B, you know the non-relativistic Lorentz force exerted by
them on a particle with charge q,

F = m
dv

dt
= q

(

E+
v

c
×B

)

• Note that a stationary charge only feels the effects of an electric field, and
that force is parallel to E.

• Motion is required to feel the effects of magnetic field, and the Lorentz
force is perpendicular to both B and the particle’s current velocity vector.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.10



E(r) and B(r) are continuous vector fields. At each point in space, you can
draw a little vector, and then later “connect” them with field lines.

For E, field lines = lines of force. In absence of other forces, particles will be
accelerated parallel to field lines. Electric field lines begin & end with electric

charges.

Magnetic field lines are all CLOSED... there are no magnetic charges.

The magnetic Lorentz force isn’t parallel to the field lines, but they’re still
useful:

• Some pieces of physics make the most sense when thinking about “how

many” field lines cross through a surface.

• Sometimes one can see them! Plasma often organizes itself ALONG field
lines – i.e., rates of conductivity, particle transport, etc., are quick/easy in

the ‖ direction; not in the ⊥ direction. (coronal loops)

• In some ways, we’ll see that field lines have some elasticity/tension to
them; i.e., they behave like taut wires.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The combined system of E&M fields and charged particles obeys all four
Maxwell’s equations, which relate E & B to:

• ρc (charge density): just what it says: how much electric charge is
concentrated into a given volume (statcoulombs/cm3).

• J (current density): how much charge is in motion in a given volume
(units: ρcv... also: statamperes/cm2). To get total current I (in
statamperes) passing through a given surface area dA, integrate over

J · dA.

We’ll soon write rigorous definitions for ρc and J as sums over the properties of
charged particles.

In Maxwell’s equations, ρc & J mainly are “sources” for E & B. However,
E & B also feed back on ρc & J, so the whole system is complex & coupled.

The first of Maxwell’s equations...

∇ · E = 4πρc (Gauss’s law)

which tells us how electric fields are generated by charge imbalances.

We already know this from Coulomb’s law: a point-charge in a vacuum exerts
an electric field. The field due to a point charge q1 (at the origin) is

E(r) = q1
r

|r|3
[

with ρc(r) = q1 δ(r)
]

.

The associated Lorentz force on a test particle q2, due to the point charge q1 at
the origin, has a magnitude

|F| = |q1q2|
r2

and the electrostatic potential energy due to these two charges is the work
done bringing in the test charge from infinity,

UE = −
∫ r

∞
F · dr =

q1q2
r

which we’ll use later to compare with other kinds of energy.
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The 2nd Maxwell’s equation is:

∇× E = −1

c

∂B

∂t
(Faraday’s law)

Another way to generate an electric field is to have a time-varying magnetic
field. Faraday invented the dynamo.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The last two Maxwell’s equations involve the magnetic field.

∇ ·B = 0 (law of no magnetic monopoles)

Also known as the conservation of magnetic flux. Any closed 3D volume must
have equal amount of field lines

poking into it as poking out of it.

Integral version of ∇ ·B = 0

given by the divergence theorem:

∮

B · dA = 0

The last of Maxwell’s equations:

∇×B =
4πJ

c
+

1

c

∂E

∂t
(Ampère’s law)

Magnetic fields can be generated by either currents (moving charges relative to
one another), or by time-variability of the electric field.

In plasma physics, we will often note that the displacement current term

(∂E/∂t) has a tiny magnitude compared to the other terms, and it will be
ignored.

However, for E&M waves propagating in a pure vacuum (J = 0), the
displacement current term is important.
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With what we’ve given so far, we can demonstrate charge conservation:

Take ∇· Ampère’s law, and then use Gauss’s law, to obtain

∂ρc
∂t

+ ∇ · J = 0

which says that any local creation or destruction of charge in a box is balanced

exactly by the ‘flux’ of charge in or out of the box.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

One can manipulate Maxwell’s equations into a wave equation for
electromagnetic fluctuations.

Take the curl of both sides in the vacuum version of Ampère’s law:

∇× (∇×B) =
1

c
∇× ∂E

∂t
=

1

c

∂

∂t
(∇× E)

and we can use Faraday’s law to rewrite the right-hand side:

∇× (∇×B) = − 1

c2
∂

∂t

(
∂B

∂t

)

.

Lastly, use a vector identity to rework the left-hand side:

∇× (∇×B) = ∇(∇ ·B)−∇2B

and, since ∇ ·B = 0, it leaves us with a wave equation,

∇2B =
1

c2
∂2B

∂t2
with phase speed Vph = c .

We could have started by taking the curl of Faraday, then plugging in Ampère,

and we’d get the same wave equation for E.

Then, either Faraday or Ampère tell us that wavelike solutions for E & B are

mutually perpendicular, and both ⊥ to the direction of propagation k:
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Throughout the course, we’ll deal a lot with electromagnetic radiation that
passes through gas & plasma. Atoms & ions absorb and/or scatter radiation.

(e.g., if J 6= 0 when charged particles are present, there would be a first-order

∂/∂t term in the wave equation: waves would be damped)

Last piece of E&M review: One can show how Maxwell’s equation lead to an

expression for electromagnetic energy conservation, with a net “loss” when
J 6= 0:

∂

∂t
(UE + UB) +∇ · S = −J ·E

where

UE =
|E|2
8π

, UB =
|B|2
8π

(electric & magnetic energy densities)

S =
c

4π
(E×B) (Poynting flux) .

Note that the RHS of energy equation < 0 if E and J point in the same
direction. Where does the energy go when currents drain it from E&M fields?

Think about resistors in circuits, or the tungsten elements of old incandescent

light bulbs: this RHS term is often called Ohmic or Joule heating.
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Gravity:

Newtonian gravity is purely attractive, so it behaves similarly to the
electrostatic force between 2 oppositely charged particles.

For point particles, both gravity & the Coulomb force drop off as 1/r2.
(If both particles are electrons, gravity is weaker by a factor of ∼1042.)

However, while q comes with both + and − signs, mass is only positive. As we

add together enough particles to make human-sized (or astro-sized) objects,
mass keeps accumulating, but charges (mostly) cancel out!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For a test particle of mass m, a radial distance r away from a source particle of

mass M , the force is

F = −
(
GmM

r2

)

êr = −GmM
r

|r|3 .

Generalizing to a continuous distribution of mass with density ρ(r),

F(r) = Gm

∫

d3r′ ρ(r′)
r′ − r

|r′ − r|3 .

Related quantities:

F = −∇Ug

{
force F

potential energy Ug

}
F = mg
Ug = mΦ

{
acceleration g
potential Φ

}

g = −∇Φ

It’s often easier to work with the scalar potential Φ. Once it’s known for a
given source, it’s straightforward to compute U (for the source) and g or F
(for a test particle).
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The main constituitive equation for the potential is

Φ(r) = −G

∫

d3r′
ρ(r′)

|r′ − r|
which can be derived after knowing that

∇
(

1

|r′ − r|

)

=
r′ − r

|r′ − r|3

where the gradient derivatives are taken with respect to r (and r′ is held fixed).

The differential form of the potential equation is

∇2Φ = 4πGρ (Poisson’s equation),

which is equivalent to Gauss’s law in E&M.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Later, we’ll want to know how particles move in bound orbits around

gravitational sources. For the simple case of spherically symmetric potentials,
one can define two useful velocity-like quantities:

1. The circular speed vcirc(r), which is given by equating the magnitudes of

the gravitational and centripetal accelerations,

|g| = v2circ
r

❀ vcirc(r) =
√

r |∇Φ|

and the associated angular frequency is Ω = vcirc/r.

2. The escape speed vesc(r), which is given by equating the particle’s
(positive) kinetic energy with the (negative) potential energy of the central

source,
1

2
mv2esc = |Ug| ❀ vesc(r) =

√

2 |Φ| .

For a point-mass source...

Φ(r) = −GM

r
, vcirc(r) =

√

GM

r
, vesc(r) =

√

2GM

r

...and the motions are ideally Keplerian.
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