
ASTR-5120: Rad./Dyn. Processes . . . . . . Worked Example for the Morbidly Curious

The Instability Menagerie. Consider a gravitationally stratified medium in the z direction
(with constant gravity g = −gêz) separated into two background states at the z = 0 plane:

In this problem you will study the linear instability
of this ideal MHD medium to small perturbations
in the horizontal interface.

Properties above the interface have superscript (+)
symbols, and properties below the interface have
superscript (−) symbols.

The zero-order background quantities are specified
at the z = 0 plane. Vector zero-order quantities
(i.e., u0 and B0) are pointing only in the x
direction, and can be considered constants.

Big assumptions: The linear velocity perturbations u1 are incompressible and irrotational; i.e.,

∇ · u1 = 0 , ∇× u1 = 0

and the displacement vector ξ is defined by

u1 =
∂ξ

∂t
+ u0 · ∇ξ (i.e., crests & troughs drift along with u0) .

Assume all 1st order quantities vary as exp(−iωt+ ikxx+ ikyy + ikzz), and consider kx and ky to
be known and freely choosable parameters.

Note: Parts (a)–(e) below involve assembling together different pieces of this problem. They will
be brought together in part (f), and applied in parts (g)–(i).

(a) For the above geometry, solve the linearized induction equation for B1 as a function of u1.

(b) Similarly, solve the x component of the linearized momentum equation for the gas pressure
perturbation P1 as a function of u1x.

(c) In this problem, we can write u1 = −∇ψ. Combine this with the assumptions given above
to show how ψ obeys Laplace’s equation. Write a linearized version of that equation to show
how it puts specific constraints on kz (if kx and ky are arbitrary). Use that to write out the
explicit height dependence of ψ(z) in both domains.

Hint: If faced with 2 possible solutions (±), choose the one that is physically realistic (i.e.,
finite) in its respective z domain. This may be a different choice in the upper and lower
domains!

(d) Combine the above expression with the definition of u1 to specifically write u1x as a function
of the vertical displacement ξz.

(e) If we assume total pressure balance between the two domains, show that the 1st order
component of that total pressure balance can be written as

P
(+)
1 +

B
(+)
0 B

(+)
1x

4π
− ρ

(+)
0 gξz = P

(−)
1 +

B
(−)
0 B

(−)
1x

4π
− ρ

(−)
0 gξz .
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Hint: The interface is not just z = 0. It is perturbed by the first-order perturbation.

(f) Substitute in the results from parts (a)–(d) into both sides of the total pressure balance
equation from part (e), such that each term is proportional to ξz. After canceling out the
ξz terms, show that the result agrees with the following:

ρ
(+)
0

[

−ω2
+ − gk⊥

]

+
k2x[B

(+)
0 ]2

4π
= ρ

(−)
0

[

ω2
− − gk⊥

]

−
k2x[B

(−)
0 ]2

4π

where ω± = ω − kxu
(±)
0 and k2

⊥
= k2x + k2y.

(g) For a static, field-free medium (i.e., all u0 = B0 = 0), show that the result from part (f)
reduces to the traditional Rayleigh–Taylor instability criterion given in class.

(h) Modify part (g) by adding a magnetic field in the lower region (B
(−)
0x 6= 0). Show that both

kinds of magnetic R–T instabilities (interchange and undular) behave in qualitatively the
same ways as was described in the lecture notes.

(i) Extra credit: You’ve done enough, but if you’re really curious, you can derive the Kelvin–
Helmholtz instability criterion, too. Neglect background magnetic fields (i.e., assume B0 =
0), but impose nonzero shear flows (u0 6= 0 in both regions), and derive the instability
criterion given in the lecture notes. Assume ky = 0, and thus kx = k⊥.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) In class, we showed that the right-hand side of the ideal MHD induction equation can be
broken up into 4 (easier to use) terms:

∂B

∂t
= ∇× (u×B) = u(∇ ·B) − B(∇ · u) + (B · ∇)u − (u · ∇)B

The 1st term is always zero. The 2nd term in our problem is also zero, due to the 0th order
part (u0 = constant) and the 1st order part (incompressible perturbations) both being zero.
Thus, the 3rd and 4th terms can be linearized as follows,

∂B1

∂t
= (B0 · ∇)u1 − (u0 · ∇)B1

Thus, the sinusoidal dependence can be inserted,

−iωB1 = ikxB0u1 − ikxu0B1

and the equation is rearranged to obtain

B1 =

(

kxB0

kxu0 − ω

)

u1 .

(b) The ideal momentum equation,

ρ
∂u

∂t
+ ρu · ∇u = −∇P + ρg +

(∇×B)×B

4π

can be linearized and simplified for our problem. For incompressible fluctuations, we know
ρ1 = 0. Using that, in combination with the knowledge that u0 and B0 are constants, we get

ρ0
∂u1

∂t
+ ρ0u0 · ∇u1 = −∇P1 +

(∇×B1)×B0

4π
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(also making use of the fact that the constant g is cancelled out by the zero-order total pressure
gradient). We want to examine the x component of this equation, and we can cancel out the
Lorentz force because it is perpendicular to B0, which lies along the x direction. Thus, the
surviving terms are

−iωρ0u1x + ikxρ0u0u1x = −ikxP1 =⇒ P1 =
(ω − kxu0)ρ0u1x

kx
.

(c) The potential ψ in an incompressible & irrotational flow obeys Laplace’s equation,

∇2ψ = 0 =⇒ k2ψ = 0

and because ψ 6= 0, we require that

k2x + k2y + k2z = 0 =⇒ kz = ±ik⊥

(

where k⊥ =
√

k2x + k2y

)

.

This means that the height dependence of the potential is ψ(z) ∝ exp[∓k⊥z].

In physically realistic environments, exponentials shouldn’t be allowed to blow up to infinity.
Thus,

In the

{

upper (+)
lower (−)

}

domain, we need to specify

{

ψ(z) ∝ e−k⊥z (kz = +ik⊥)
ψ(z) ∝ e+k⊥z (kz = −ik⊥) .

(d) Lastly, we combine together the definition of the displacement (u1 = −i[ω− kxu0]ξ) with the
definition of the potential (u1 = −ikψ), to write u1x in terms of ξz. Specifically, we write
u1z = −ikzψ, and plug it into

u1x = −ikxψ =

(

kx
kz

)

u1z =
−i(ω − kxu0)kx

kz
ξz .

Thus, using the two above solutions for kz, we have

u1x =
σ(ω − kxu0)kxξz

k⊥
where σ =

{

−1 in the upper (+) domain,
+1 in the lower (−) domain.

(e) Since there are no large zero-order vertical motions, the total pressure (the sum of the gas
and magnetic pressures) must obey hydrostatic equilibrium,

∂Ptot

∂z
= −ρg .

We want to specify total pressure balance at the interface (P
(+)
tot = P

(−)
tot ), but we need to

realize that even though the subscript-0 quantities are specified at z = 0, the interface itself

is not at z = 0. Upward or downward displacements (ξz) result in a weak stratification of the
zero-order quantities. Integrating the hydrostatic equilibium equation gives

Ptot = (Ptot,0 + Ptot,1) − ρ0gξz

where the last term is a new 1st order term that supplements the “locally perturbed” Ptot,1

term. The latter must then be written in terms of the perturbed gas pressure P1 and the
perturbed magnetic pressure. Note that we can write

B2 = |B0 +B1|
2 = |B0|

2 + 2B0 ·B1 + {2nd order terms}

≈ B2
0 + 2B0B1x

and this can be plugged into the perturbed magnetic pressure to obtain the desired result.
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(f) Given the results shown above, the steps should be straightforward.

(g) The steps should be straightforward, to obtain

ω2 = −gk⊥

[

ρ
(+)
0 − ρ

(−)
0

ρ
(+)
0 + ρ

(−)
0

]

.

(h) Apologies for defining x and y directions in a different way here than in the lecture notes.

Interchange: If we restrict kx = 0 and ky 6= 0, then the magnetic terms in the dispersion
relation disappear. The dispersion relation is identical to the non-magnetized R–T instability.

Undular: If we restrict ky = 0, then we can write kx = k⊥ 6= 0. If we also define the Alfvén

speed in the lower region as VA = B
(−)
0 /

√

4πρ
(−)
0 , then the dispersion relation becomes

ω2 = −gk⊥

[

ρ
(+)
0 − ρ

(−)
0

ρ
(+)
0 + ρ

(−)
0

]

+ k2⊥V
2
A

[

ρ
(−)
0

ρ
(+)
0 + ρ

(−)
0

]

.

If ρ
(+)
0 < ρ

(−)
0 , the system is always stable. If ρ

(+)
0 > ρ

(−)
0 , it’s only stable when the second

(tension) term on the RHS is larger in magnitude than the first (buoyancy) term. That occurs
for large values of k⊥, which is the same as small values of the “wavelength” or field-line
curvature.

(i) The math is a bit involved, since the dispersion relation reduces to a quadratic equation,

ω2(ρ+ + ρ−)− 2ωk(ρ+u+ + ρ−u−) + k2(ρ+u
2
+ + ρ−u

2
−) + gk(ρ+ − ρ−) = 0

where I hope the notational shorthand is clear. An instability occurs when ω has an imaginary
component, which happens when the discriminant of the quadratic formula is negative. This
criterion indeed boils down to the expression given in class,

k >
g(ρ2− − ρ2+)

ρ+ρ−(u+ − u−)2
.
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