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Now, by virtue of the distribution (20), we obtain

⟨r(t)⟩ = 0; ⟨r2(t)⟩ = 1
N

∞∫

0

n(r, t)4πr4dr = 6Dt ∝ t1, (22)

in complete agreement with our earlier results, namely

x(t) = 0; x2(t) = l2t/τ∗ = 2Dt ∝ t1. (23)

Thus, the “ensemble” of the Brownian particles, initially concentrated at the origin, “dif-
fuses out” as time increases, the nature and the extent of its spread at any time t being given
by equations (20) and (22), respectively. The diffusion process, which is clearly irrever-
sible, gives us a fairly good picture of the statistical behavior of a single particle in the
ensemble. However, the important thing to bear in mind is that, whether we focus our
attention on a single particle in the ensemble or look at the ensemble as a whole, the ulti-
mate source of the phenomenon lies in the incessant, and more or less random, impacts
received by the Brownian particles from the molecules of the fluid. In other words, the
irreversible character of the phenomenon ultimately arises from the random, fluctuating
forces exerted by the fluid molecules on the Brownian particles. This leads us to another
systematic theory of the Brownian motion, namely the theory of Langevin (1908). For
a detailed analysis of the problem, see Uhlenbeck and Ornstein (1930), Chandrasekhar
(1943, 1949), MacDonald (1948–1949), and Wax (1954).

15.3 The Langevin theory of the
Brownian motion

We consider the simplest case of a “free” Brownian particle, surrounded by a fluid envi-
ronment; the particle is assumed to be free in the sense that it is not acted on by any other
force except the one arising from the molecular bombardment. The equation of motion of
the particle will then be

M
dv
dt

= F (t), (1)

where M is the particle mass, v(t) the particle velocity, and F (t) the force acting on the
particle by virtue of the impacts received from the fluid molecules. Langevin suggested
that the force F (t) may be written as a sum of two parts: (i) an “averaged-out” part, which
represents the viscous drag, −v/B, experienced by the particle (accordingly, B is the mobil-
ity of the system, that is, the drift velocity acquired by the particle by virtue of a unit
“external” force)5 and (ii) a “rapidly fluctuating” part F(t) which, over long intervals of

5If Stokes’s law is applicable, then B = 1/(6πηa), where η is the coefficient of viscosity of the fluid and a the radius of
the particle (assumed spherical).
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time (as compared to the characteristic time τ ∗), averages out to zero; thus, we may write

M
dv
dt

= − v
B

+ F(t); F(t) = 0. (2)

Taking the ensemble average of (2), we obtain6

M
d
dt

⟨v⟩ = − 1
B

⟨v⟩, (3)

which gives

⟨v(t)⟩ = v(0)exp(−t/τ ) (τ = MB). (4)

Thus, the mean drift velocity of the particle decays, at a rate determined by the relaxation
time τ , to the ultimate value zero. We note that this result is typical of the phenomena
governed by dissipative properties such as the viscosity of the fluid; the irreversible nature
of the result is also evident.

Dividing (2) by the mass of the particle, we obtain an equation for the instantaneous
acceleration, namely

dv
dt

= − v
τ

+ A(t); A(t) = 0. (5)

We now construct the scalar product of (5) with the instantaneous position r of the particle
and take the ensemble average of the product. In doing so, we make use of the facts that
(i) r · v = 1

2 (dr2/dt), (ii) r · (dv/dt) = 1
2 (d2r2/dt2) − v2, and (iii) ⟨r · A⟩ = 0.7 We obtain

d2

dt2 ⟨r2⟩ + 1
τ

d
dt

⟨r2⟩ = 2⟨v2⟩. (6)

If the Brownian particle has already attained thermal equilibrium with the molecules of
the fluid, then the quantity ⟨v2⟩ in this equation may be replaced by its equipartition value
3kT/M . The equation is then readily integrated, with the result

⟨r2⟩ = 6kTτ2

M

{
t
τ

− (1 − e−t/τ )

}
, (7)

6The process of “averaging over an ensemble” implies that we are imagining a large number of systems similar to the
one originally under consideration and are taking an average over this collection at any time t. By the very nature of the
function F(t), the ensemble average ⟨F(t)⟩ must be zero at all times.

7This is so because we have no reason to expect a statistical correlation between the position r(t) of the Brownian
particle and the force F(t) exerted on it by the molecules of the fluid; see, however, Manoliu and Kittel (1979). Of course,
we do expect a correlation between the variables v(t) and F(t); consequently, ⟨v · F⟩ ̸= 0 (see Problem 15.7).
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where the constants of integration have been so chosen that at, t = 0, both ⟨r2⟩ and its first
time-derivative vanish. We observe that, for t ≪ τ ,

⟨r2⟩ ≃ 3kT
M

t2 = ⟨v2⟩t2, (8)8

which is consistent with the reversible equations of motion whereby one would simply
have

r = vt. (9)

On the other hand, for t ≫ τ ,

⟨r2⟩ ≃ 6kTτ

M
t = (6BkT)t, (10)9

which is essentially the same as the Einstein–Smoluchowski result (15.2.22); incidentally,
we obtain here a simple, but important, relationship between the coefficient of diffusion
D and the mobility B, namely

D = BkT , (11)

which is generally referred to as the Einstein relation.
The irreversible character of equation (10) is self-evident; it is also clear that it arises

essentially from the viscosity of the medium. Moreover, the Einstein relation (11), which
connects the coefficient of diffusion D with the mobility B of the system, tells us that the
ultimate source of the viscosity of the medium (as well as of diffusion) lies in the random,
fluctuating forces arising from the incessant motion of the fluid molecules; see also the
fluctuation–dissipation theorem of Section 15.6.

In this context, if we consider a particle of charge e and mass M moving in a viscous
fluid under the influence of an external electric field of intensity E, then the “coarse-
grained” motion of the particle will be determined by the equation

M
d
dt

⟨v⟩ = − 1
B

⟨v⟩ + eE; (12)

compare this to equation (3). The “terminal” drift velocity of the particle would now be
given by the expression (eB)E, which prompts one to define (eB) as the “mobility” of the
system and denote it by the symbol µ. Consequently, one obtains, instead of (11),

D = kT
e

µ, (13)

which, in fact, is the original version of the Einstein relation; sometimes this is also referred
to as the Nernst relation.

8Note that the limiting solution (8) corresponds to “dropping out” the second term on the left side of equation (6).
9Note that the limiting solution (10) corresponds to “dropping out” the first term on the left side of equation (6).
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So far we have not felt any direct influence of the rapidly fluctuating term A(t) that
appears in the equation of motion (5) of the Brownian particle. For this, let us try to eval-
uate the quantity ⟨v2(t)⟩ which, in the preceding analysis, was assumed to have already
attained its “limiting” value 3kT/M . For this evaluation we replace the variable t in equa-
tion (5) by u, multiply both sides of the equation by exp(u/τ ), rearrange and integrate over
du between the limits u = 0 and u = t; we thus obtain the formal solution

v(t) = v(0)e−t/τ + e−t/τ
t∫

0

eu/τ A(u)du. (14)

Thus, the drift velocity v(t) of the particle is also a fluctuating function of time; of course,
since ⟨A(u)⟩ = 0 for all u, the average drift velocity is given by the first term alone, namely

⟨v(t)⟩ = v(0)e−t/τ , (15)

which is the same as our earlier result (4). For the mean square velocity ⟨v2(t)⟩, we now
obtain from (14)

⟨v2(t)⟩ = v2(0)e−2t/τ + 2e−2t/τ

⎡

⎣v(0) ·
t∫

0

eu/τ ⟨A(u)⟩du

⎤

⎦

+ e−2t/τ
t∫

0

t∫

0

e(u1+u2)/τ ⟨A(u1) · A(u2)⟩du1du2. (16)

The second term on the right side of this equation is identically zero, because ⟨A(u)⟩ van-
ishes for all u. In the third term, we have the quantity ⟨A(u1) · A(u2)⟩, which is a measure of
the “statistical correlation between the value of the fluctuating variable A at time u1 and its
value at time u2”; we call it the autocorrelation function of the variable A and denote it by
the symbol KA(u1,u2) or simply by K (u1,u2). Before proceeding with (16) any further, we
place on record some of the important properties of the function K (u1,u2).

(i) In a stationary ensemble (i.e., one in which the overall macroscopic behavior of the
systems does not change with time), the function K (u1,u2) depends only on the time
interval (u2 − u1). Denoting this interval by the symbol s, we have

K (u1,u1 + s) ≡ ⟨A(u1) · A(u1 + s)⟩ = K (s), independently of u1. (17)

(ii) The quantity K (0), which is identically equal to the mean square value of the variable
A at time u1, must be positive definite. In a stationary ensemble, it would be a
constant, independent of u1:

K (0) = const. > 0. (18)

(iii) For any value of s, the magnitude of the function K (s) cannot exceed K (0).
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Proof : Since

⟨|A(u1) ± A(u2)|2⟩ = ⟨A2(u1)⟩+ ⟨A2(u2)⟩ ± 2(A(u1) · A(u2)⟩

= 2{K (0) ± K (s)} ≥ 0,

the function K (s) cannot go outside the limits −K (0) and +K (0); consequently,

|K (s)| ≤ K (0) for all s. (19)

(iv) The function K (s) is symmetric about the value s = 0, that is,

K (−s) = K (s) = K (|s|). (20)

Proof :

K (s) ≡ ⟨A(u1) · A(u1 + s)⟩ = ⟨A(u1 − s) · A(u1)⟩ 10

= ⟨A(u1) · A(u1 − s)⟩ ≡ K (−s).

(v) As s becomes large in comparison with the characteristic time τ ∗, the values A(u1)

and A(u1 + s) become uncorrelated, that is

K (s) ≡ ⟨A(u1) · A(u1 + s)⟩ −−−−−−−→
s≫τ∗

⟨A(u1)⟩ · ⟨A(u1 + s)⟩ = 0. (21)

In other words, the “memory” of the molecular impacts received during a given interval
of time, say between u1 and u1 + du1, is “completely lost” after a lapse of time large in
comparison with τ ∗. It follows that the magnitude of the function K (s) is significant only
so long as the variable s is of the same order of magnitude as τ ∗.

Figures 15.7 through 15.9 later in this chapter show the s-dependence of certain typical
correlation functions K (s); they fully conform to the properties listed here.

We now evaluate the double integral appearing in (16):

I =
t∫

0

t∫

0

e(u1+u2)/τ K (u2 − u1)du1du2. (22)

Changing over to the variables

S = 1
2
(u1 + u2) and s = (u2 − u1), (23)

the integrand becomes exp(2S/τ )K (s), the element (du1du2) gets replaced by the corre-
sponding element (dSds) while the limits of integration, in terms of the variables S and s,

10This is the only crucial step in the proof. It involves a “shift,” by an amount s, in both instants of the measurement
process; the equality results from the fact that the ensemble is supposed to be stationary.
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FIGURE 15.2 Limits of integration, of the double integral I, in terms of the variables S and s.

can be read from Figure 15.2; we find that, for 0 ≤ S ≤ t/2,s goes from −2S to +2S while, for
t/2 ≤ S ≤ t, it goes from −2(t − S) to +2(t − S). Accordingly,

I =
t/2∫

0

e2S/τ dS

+2S∫

−2S

K (s)ds +
t∫

t/2

e2S/τ dS

+2(t−S)∫

−2(t−S)

K (s)ds. (24)

In view of property (v) of the function K (s), see equation (21), the integrals over s draw
significant contribution only from a very narrow region, of the order of τ ∗, around the value
s = 0 (i.e., from the shaded region in Figure 15.2); contributions from regions with larger
values of |s| are negligible. Thus, if t ≫ τ ∗, the limits of integration for s may be replaced by
−∞ and +∞, with the result

I ≃ C

t∫

0

e2S/τ dS = C
τ

2
(e2t/τ − 1), (25)

where

C =
∞∫

−∞

K (s)ds. (26)

Substituting (25) into (16), we obtain

⟨v2(t)⟩ = v2(0)e−2t/τ + C
τ

2
(1 − e−2t/τ ). (27)

Now, as t → ∞, ⟨v2(t)⟩ must tend to the equipartition value 3kT/M ; therefore,

C = 6kT/Mτ (28)
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and hence

⟨v2(t)⟩ = v2(0) +
{

3kT
M

− v2(0)

}
(1 − e−2t/τ ). (29)11

We note that if v2(0) were itself equal to the equipartition value 3kT/M , then ⟨v2(t)⟩ would
always remain the same, which shows that statistical equilibrium, once attained, has a
natural tendency to persist.

Substituting (29) into the right side of (6), we obtain a more representative description
of the manner in which the quantity ⟨r2⟩ varies with t; we thus have

d2

dt2 ⟨r2⟩ + 1
τ

d
dt

⟨r2⟩ = 2v2(0)e−2t/τ + 6kT
M

(1 − e−2t/τ ), (30)

with the solution

⟨r2⟩ = v2(0)τ2(1 − e−t/τ )2 − 3kT
M

τ2(1 − e−t/τ )(3 − e−t/τ ) + 6kTτ

M
t. (31)

Solution (31) satisfies the initial conditions that both ⟨r2⟩ and its first time-derivative van-
ish at t = 0; moreover, if we put v2(0) = 3kT/M , it reduces to solution (7) obtained earlier.
Once again, we note the reversible nature of the motion for t ≪ τ , with ⟨r2⟩ ≃ v2(0)t2, and
its irreversible nature for t ≫ τ , with ⟨r2⟩ ≃ (6BkT)t.

Figures 15.3 and 15.4 show the variation, with time, of the ensemble averages ⟨v2(t)⟩
and ⟨r2(t)⟩ of a Brownian particle, as given by equations (29) and (31), respectively. All
important features of our results are manifestly evident in these plots.

Brownian motion continues to be a topic of contemporary research nearly 200 years
after Brown’s discovery and over 100 years after Einstein and Smoluchowski’s analysis and
early measurements by Perrin. The renewed interest is due to the growth in the techno-
logical importance of colloids across a wide range of fields and the development of digital
video and computer image analysis. An interesting example is the detailed observation and
analysis of rotational and two-dimensional translational Brownian motion of ellipsoidal
particles by Han et al. (2006) in a thin microscope slide. The case of rotational Brownian
motion was first analyzed by Einstein (1906b) and first measured by Perrin (1934, 1936).
Both rotational and translational modes diffuse according to Langevin dynamics but the
translational diffusion is coupled to the rotational diffusion since the translational diffu-
sion constant parallel to the longer axis is larger than the diffusion constant perpendicular

11One may check that

d
dt

⟨v2(t)⟩ = 2
τ

[
v2(∞) − ⟨v2(t)⟩

]
= − 2

τ
$⟨v2(t)⟩,

where v2(∞) = 3kT/M and $⟨v2(t)⟩ is the “deviation of the quantity concerned from its equilibrium value.” In this form
of the equation, we have a typical example of a “relaxation phenomenon,” with relaxation time τ/2.
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to that axis. The rotational diffusion and both long-axis (a) and short-axis (b) body-frame
diffusions are all Gaussian:
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with diffusion constants Dθ , Da, and Db. Experiments have observed the complex
two-dimensional spatial diffusion at short times (t ! τθ = 1/(2Dθ )), as predicted by the
Langevin theory. The long-time (t ≫ τθ ) spatial diffusion is isotropic with diffusion con-
stant D = (Da + Db)/2.

15.3.A Brownian motion of a harmonic oscillator

An analysis similar to the one for a diffusing Brownian particle can also be performed
for a particle in a harmonic oscillator potential that prevents the particle from diffus-
ing away from the origin and allows a more general analysis of the relationship between
the position and velocity response functions and the power spectra of the fluctua-
tions; see Kappler (1938) and Chandrasekhar (1943). The one-dimensional equation of
motion for a Brownian particle of mass M in a harmonic oscillator potential with spring
constant Mω2

0 is

d2x
dt2 + γ

dx
dt

+ ω2
0x = F(t)

M
, (33)

where γ (= 6πηa/M) is the damping coefficient of a spherical particle in a fluid with
viscosity η. Just as in the case of diffusive Brownian motion, the force F(t) can be a time-
dependent external force designed to explore the response function or a time-dependent
random force due to collisions with molecules in the fluid to analyze the equilibrium fluc-
tuations. Assuming the system was in equilibrium in the distant past, the position at time
t is given by

x(t) =
t∫

−∞

χxx(t − t′)F(t′)dt′, (34)

where

χxx(s) = 1
Mω1

e− γ s
2 sin(ω1s) (35)

is the xx response function and ω1 =
√

ω2
0 − γ 2

4 . 12 The velocity response is given by

v(t) =
t∫

−∞

χvx(t − t′)F(t′)dt′, (36)

12This form of the response function assumes that the oscillator is underdamped. The notation χxx refers to the
notation used in Section 15.6.A in which the response of the position coordinate x depends on the applied field F that
couples to the Hamiltonian via a term −F(t)x(t).
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of an argument involving the second law of thermodynamics and the exchange of energy
between two resistances in thermal equilibrium.19

15.6 The fluctuation–dissipation theorem
In Section 15.3 we obtained a result of considerable importance, namely

1
B

≡ M
τ

= M2

6kT
C = M2

6kT

∞∫

−∞

KA(s)ds

= 1
6kT

∞∫

−∞

KF (s)ds; (1)

see equations (15.3.4), (15.3.26), and (15.3.28). Here, KA(s) and KF (s) are, respectively, the
autocorrelation functions of the fluctuating acceleration A(t) and the fluctuating force F(t)
experienced by the Brownian particle:

KA(s) = ⟨A(0) · A(s)⟩ = 1
M2 ⟨F(0) · F(s)⟩ = 1

M2 KF (s). (2)20

Equation (1) establishes a fundamental relationship between the coefficient, 1/B, of the
“averaged-out” part of the total force F (t) experienced by the Brownian particle due to the
impacts of the fluid molecules and the statistical character of the “fluctuating” part, F(t),
of that force; see Langevin’s equation (15.3.2). In other words, it relates the coefficient of
viscosity of the fluid, which represents dissipative forces operating in the system, with the
temporal character of the molecular fluctuations; the content of equation (1) is, therefore,
referred to as a fluctuation–dissipation theorem.

The most striking feature of this theorem is that it relates, in a fundamental manner,
the fluctuations of a physical quantity pertaining to the equilibrium state of a given system
to a dissipative process which, in practice, is realized only when the system is subject to an
external force that drives it away from equilibrium. Consequently, it enables us to deter-
mine the nonequilibrium properties of the given system on the basis of a knowledge of the
thermal fluctuations occurring in the system when the system is in one of its equilibrium

19We note that the foregoing results are essentially equivalent to Einstein’s original result for charge fluctuations in a
conductor, namely

⟨δq2⟩t = 2kT
R t;

compare, as well, the Brownian-particle result: ⟨x2⟩t = 2BkTt.
20We note that the functions KA(s) and KF (s), which are nonzero only for s = O(τ ∗), see equation (15.3.21), may, for

certain purposes, be written as

KA(s) = 6kT
M2B δ(s) and KF (s) = 6kT

B δ(s).

In this form, the functions are nonzero only for s = 0.
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states! For an expository account of the fluctuation–dissipation theorem, the reader may
refer to Kubo (1966).

At this stage we recall that in equation (15.3.11) we obtained a relationship between
the diffusion coefficient D and the mobility B, namely D = BkT . Combining this with
equation (1), we get

1
D

= 1
6(kT)2

∞∫

−∞

KF (s)ds. (3)

Now, the diffusion coefficient D can be related directly to the autocorrelation function
Kv(s) of the fluctuating variable v(t). For this, one starts with the observation that, by
definition,

r(t) =
t∫

0

v(u)du, (4)

which gives

⟨r2(t)⟩ =
t∫

0

t∫

0

⟨v(u1) · v(u2)⟩du1du2. (5)

Proceeding in the same manner as for the integral in equation (15.3.22), one obtains

⟨r2(t)⟩ =
t/2∫

0

dS

+2S∫

−2S

Kv(s)ds +
t∫

t/2

dS

+2(t−S)∫

−2(t−S)

Kv(s)ds; (6)

compare this to equation (15.3.24).
The function Kv(s) can be determined by making use of expression (15.3.14) for v(t)

and following exactly the same procedure as for determining the quantity ⟨v2(t)⟩, which is
nothing but the maximal value, Kv(0), of the desired function. Thus, one obtains

Kv(s) =

⎧
⎪⎪⎨

⎪⎪⎩

v2(0)e−(2t+s)/τ + 3kT
M

e−s/τ (1 − e−2t/τ ) for s > 0 (7)

v2(0)e−(2t+s)/τ + 3kT
M

es/τ (1 − e−2(t+s)/τ ) for s < 0; (8)

compare these results to equation (15.3.27). It is easily seen that formulae (7)and (8) can
be combined into a single one, namely

Kv(s) = v2(0)e−|s|/τ +
{

3kT
M

− v2(0)

}
(e−|s|/τ − e−(2t+s)/τ ) for all s; (9)
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compare this to equation (15.3.29). In the case of a “stationary ensemble,”

Kv(s) = 3kT
M

e−|s|/τ , (10)

which is consistent with property (15.3.20). It should be noted that the time scale for the
correlation function Kv(s) is provided by the relaxation time τ of the Brownian motion,
which is many orders of magnitude larger than the characteristic time τ ∗ that provides the
time scale for the correlation functions KA(s) and KF (s).

It is now instructive to verify that the substitution of expression (10) into (6) leads to
formula (15.3.7) for ⟨r2⟩, while the substitution of the more general expression (9) leads to
formula (15.3.31); see Problem 15.17. In either case,

⟨r2⟩ −−−→
t≫τ

6Dt. (11)

In the same limit, equation (6) reduces to

⟨r2⟩ ≃
t∫

0

dS

∞∫

−∞

Kv(s)ds = t

∞∫

−∞

Kv(s)ds. (12)

Comparing the two results, we obtain the desired relationship:

D = 1
6

∞∫

−∞

Kv(s)ds. (13)

In passing, we note, from equations (3) and (13), that

∞∫

−∞

Kv(s)ds

∞∫

−∞

KF (s)ds = (6kT)2; (14)

see also Problem 15.7.
It is not surprising that the equations describing a fluctuation–dissipation theorem can

be adapted to any situation that involves a dissipative mechanism. For instance, fluctua-
tions in the motion of electrons in an electric resistor give rise to a “spontaneous” thermal
e.m.f., which may be denoted as B(t). In the spirit of the Langevin theory, this e.m.f. may
be split into two parts: (i) an “averaged-out” part, −RI(t), which represents the resistive (or
dissipative) aspect of the situation, and (ii) a “rapidly fluctuating” part, V (t), which, over
long intervals of time, averages out to zero. The “spontaneous” current in the resistor is
then given by the equation

L
dI
dt

= −RI + V (t); ⟨V (t)⟩ = 0. (15)



620 Chapter 15 . Fluctuations and Nonequilibrium Statistical Mechanics

Comparing this with the Langevin equation (15.3.2) and pushing the analogy further, we
infer that there exists a direct relationship between the resistance R and the temporal
character of the fluctuations in the variable V (t). In view of equations (1) and (13), this
relationship would be

R = 1
6kT

∞∫

−∞

⟨V (0) · V (s)⟩ds (16)

or, equivalently,

1
R

= 1
6kT

∞∫

−∞

⟨I(0) · I(s)⟩ds. (17)

A generalization of the foregoing result has been given by Kubo (1957, 1959); see, for
instance, Problem 6.19 in Kubo (1965), or Section 23.2 of Wannier (1966). On generaliza-
tion, the electric current density j(t) is given by the expression

ji(t) =
∑

l

t∫

−∞

El(t ′)#li(t − t′)dt′ (i, l = x,y,z); (18)

here, E(t) denotes the applied electric field while

#li(s) = 1
kT

⟨jl(0)ji(s)⟩. (19)

Clearly, the quantities kT#li(s) are the components of the autocorrelation tensor of the
fluctuating vector j(t). In particular, if we consider the static case E = (E,0,0), we obtain
for the conductivity of the system

σxx ≡ jx

E
=

t∫

−∞

#xx(t − t′)dt′ =
∞∫

0

#xx(s)ds

= 1
2kT

∞∫

−∞

⟨ jx(0)jx(s)⟩ds, (20)

which may be compared with equation (17). If, on the other hand, we take E =
(E cosωt,0,0), we obtain instead

σxx(ω) = 1
2kT

∞∫

−∞

⟨ jx(0)jx(s)⟩e−iωsds. (21)



15.6 The fluctuation–dissipation theorem 621

Taking the inverse of (21), we get

⟨jx(0)jx(s)⟩ = kT
π

∞∫

−∞

σxx(ω)eiωsdω. (22)

If we now assume that σxx(ω) does not depend on ω (and may, therefore, be denoted by the
simpler symbol σ ), then

⟨jx(0)jx(s)⟩ = (2kTσ )δ(s); (23)

see footnote 20. A reference to equations (15.5.17) shows that, in the present approxima-
tion, thermal fluctuations in the electric current are charaterized by a “white” noise.

15.6.A Derivation of the fluctuation–dissipation theorem
from linear response theory

In this section we will show that the nonequilibrium response of a thermodynamic system
to a small driving force is very generally related to the time-dependence of equilibrium
fluctuations. In hindsight, this is not too surprising since natural fluctuations about the
equilibrium state also induce small deviations of observables from their average val-
ues. The response of the system to these natural fluctuations should be the same as the
response of the system to deviations from the equilibrium state as caused by small driving
forces; see Martin (1968), Forster (1975), and Mazenko (2006).

Let us compute the time-dependent changes to an observable A caused by a small
time-dependent external applied field h(t) that couples linearly to some observable B. The
Hamiltonian for the system then becomes

H(t) = H0 − h(t)B, (24)

where H0 is the unperturbed Hamiltonian in the equilibrium state. Remarkably, the calcu-
lation for determining the nonequilibrium response to the driving field is easiest using the
quantum-mechanical density matrix approach developed in Section 5.1. The equilibrium
density matrix is given by

ρ̂eq = exp(−βH0)

Tr
(
exp(−βH0)

) , (25)

where equilibrium averages involve traces over the density matrix:

⟨A⟩eq = Tr
(
Aρ̂eq

)
. (26)

When the Hamiltonian includes a small time-dependent field h(t), then this additional
term drives the system slightly out of equilibrium. We will assume that the field was zero
in the distant past so the system was initially in the equilibrium state defined by the


