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4
Magnetohydrodynamics

In Chapter 3, we studied how single charged particles move in specified electric
and magnetic fields, and we then applied our knowledge of single particle motion
to the radiation belt and ring current plasma. However, the fields in some situations
depend too much on the particle distributions to be readily specified and must be
found self-consistently using the charged particle distribution functions. Often, it
is not necessary to have complete information about the distribution functions in a
system. In fact, it is usually sufficient to know only a few of the velocity moments
of the distribution function, as derived in Chapter 2. In Chapter 4, we will adopt the
"fluid" picture of a plasma, introduced in Chapter 2, and further refine it to obtain
an analytical tool useful for studying space plasma phenomena. This analytical tool
is called magnetohydrodynamics (or MHD for short). We cannot adequately cover
in one chapter all the material that would be desirable to know about this subject
and so the reader is encouraged to consult one or more of the references listed in
the bibliography at the end of this chapter.

4.1 Two-fluid plasma
Let us consider a plasma consisting of two species: electrons (e) with mass me and
a single ion species (/) with mass m;. The continuity equations for electrons and
ions are given by (see Equation (2.40))

^ + V-(neUe) = Se (4.1)
ot

and

drii
- T

L + V.(/iI-uI-) = 5/, (4.2)
ot

where ns, us, Ss (s — e,i) refer to the number density, flow velocity, and net
source, respectively, for species s. The respective mass densities can be expressed
as pe = mene and p,- = m,-/!,-.

90
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4.2 Plasma oscillations 91

The momentum equation for a plasma species s was given by Equation (2.61). We
assume that both the electron and ion thermal pressure tensors are isotropic, with
scalar pressures given by pe and pt, respectively. The electron and ion momentum
equations are

r d l
neme h U g ' V ug = —nee[E + ue xB] — Vpe + nemeglot J

- ^2 nemevet(ue - ut) (4.3)

and

ntrrii \— + u, • vlu,- = +nte[E + U; x B] - VPi + mrmg

- ^ntniiVitiUi - ut) - PiimtUi - mnun). (4.4)

Recall from Chapter 2 that g is the acceleration due to gravity and vst is the
effective momentum transfer collision frequency between species s and t. The
"factional" term includes a sum over all species but does not include self-collisions
(i.e., s / t). For electrons, one must consider electron-ion and electron-neutral
collisions. Equation (4.4) includes the "mass-loading" term, but the viscosity terms
have been omitted. P,- is the production rate of ions due to the ionization of a neutral
species with mass mn and velocity un.

The energy equations for electrons and ions can be found from Equation (2.73),
(2.78), or (2.79) with s = e or i. However, these equations will not be reproduced
here but will be provided in convenient forms as they are required later in the
chapter.

The E and B fields that are present in Equations (4.3) and (4.4) are macroscopic
fields and can be found from Maxwell's equations with macroscopically defined
source terms (see Chapter 2, Section 2.5).

The full two-fluid equations are difficult to use, although they have been occa-
sionally used for space physics problems such as solar wind outflow from the Sun.
Usually these equations are further approximated.

4.2 Plasma oscillations
4.2.1 Waves

Waves in plasmas can be studied using either the fluid equations or the Vlasov
equation. However, the fluid approach is much easier to carry out and gives a better
physical picture of the nature of wave propagation. We restrict ourselves to the fluid
approach in this book, although it should be noted that wave growth or damping
must be treated with the Vlasov equation approach. Before dealing with waves in
plasmas, let us review some properties of waves in general.
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92 Magnetohydrodynamics

Any general wave train (as specified by the wave part of the electric field Ei (x, t),
for example) can be represented by the sum of many plane waves with a range of
frequencies. Formally, Ei(x, t) is given by the inverse Fourier-Laplace transform
of Ei (k, &>), where k is the wave vector and co is the angular frequency of a single
Fourier-Laplace component:

Ei(x, t) = - ^ 4 JJd\dcoEx(K co)ei[k'x-Mt]. (4.5)

If a wave train has a very narrow range of frequencies and wavenumbers, co and k
(for example, a delta function), then we can write Equation (4.5) as

El(xj) = E0ei[k'x-cot\ (4.6)

where Eo is a constant amplitude vector, which can be complex (i.e., have real and
imaginary parts). Equation (4.6) describes a plane wave. Actually, the measurable
electric field for a plane wave is the real part of Equation (4.5) or (4.6). Recall that
the exponential function of an imaginary argument is given by

elx = COSJC + i sinx. (4.7)

Hence, if the wave amplitude Eo is real (although it does not have to be in general),
we find that the electric field for our plane wave is

Ei(x, t) = E0cos(k • x - cot). (4.8)

The wave vector k points in the direction of wave propagation. We write k = kit
for a wave propagating in the x direction. The wavenumber k can be written in
terms of the wavelength k as

* = ^ . (4-9)
A

The angular frequency can be expressed as co — 2nf, where / is the w&vefrequency
in cycles/second or hertz (Hz). For k = k% Equation (4.8) becomes

EI(JC, t) = E0cos(fcjc - cot). (4.10)

EI(JC, t) varies sinusoidally in time with frequency co for fixed x and varies sinu-
soidally in the spatial variable x for a fixed time. The phase of the wave can be
written

phase = [kx — cot] = k \x — ( — In = constant. (4.11)
L \kj J

The phase clearly remains constant for a reference frame moving with velocity
(co/k). The phase speed of the wave (Ax/At) is thus given by

Vph = co/k. (4.12)
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4.2 Plasma oscillations 93

A wave packet limited in spatial extent (oo » Ax » k) consists of the super-
position of "many" plane waves for a range of wavenumbers (and frequencies) and
is centered at (fc, co). The wave packet as a whole propagates at the group velocity

Vg = — , (4.13)
dco
Ik'

where co is expressed as a function of wavenumber k. The functional dependence
of co on k depends on the type of wave and is given by the dispersion relation for
that type of wave:

co = co(k). (4.14)

For example, the dispersion relation for electromagnetic wave propagation in a
vacuum is

co2 = k2c2, (4.15)

where c is the speed of light. In this case, we simply have Vg = Vph = ±c, which
tells us that electromagnetic waves travel at the speed of light in a vacuum. The
propagation of electromagnetic radiation in a plasma is considered in the appendix
and in Problem 4.1. An electromagnetic wave does not travel at the speed of light
in a plasma.

4.2.2 Plasma (Langmuir) oscillations

Plasmas support many different wave modes and Langmuir oscillations/waves com-
prise the most important mode. Langmuir oscillations are a high-frequency phe-
nomena primarily involving electrons; ions are relatively massive and are slow to
follow the wave motion. Hence, let us assume that the ions are motionless and that
the ion density remains uniform: n/ = no. Let us further assume that the electron
and ion fluids are both cold: Te = 7} = 0. Let the magnetic field be zero and we
also neglect collisions. The two-fluid equations are reduced to the following simple
continuity and momentum equations for electrons:

dne

dt
and

V.(neue) = 0 (4.16)

mene I — + (u, • V)uJ - -neeE. (4.17)

The electric field is given by Gauss's law with the charge density expressed in terms
of the electron and ion densities:

V • E = —(m - ne) = —(n0 - ne). (4.18)
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94 Magnetohydrodynamics

We now separate all quantities into background (subscript "0") and wave parts
(subscript "1") to obtain

ne = neo + neu (4.19a)

ue = 11*0 + 11*1, (4.19b)

and

E = Eo + Ei. (4.19c)

We take the background plasma to be quasi-neutral and uniform (neo = ni = no).
In this case, we must also have û o = 0 and Eo = 0 for the background plasma in
order to satisfy Equations (4.16)-(4.18). Note that Vne0 = 0 and dneo/dt = 0.

Further progress can be achieved by assuming that the wave amplitude is small:

ne = no + ne\ with \ne\ | <$C ^o- (4.20)

All wave quantities, relative to the background quantities, are of the order of a
parameter e = 0{\ne\ |/no)» which is assumed to be very small (s < 1).

We can now write the electron continuity and momentum equations as
dnel , „
dt

and

(4.21)

me f ̂ £ l + u,i • Vu J = -eEx (4.22)
L t J

~ s2s2 (neglect) « e.

The magnitudes of the terms in Equation (4.22) are indicated using the parameter e.
Gauss's law becomes

V • Ei = -[no - (no + nel)] = - — . (4.23)

The net charge density is proportional to the wave density ne\.
We now linearize Equations (4.21) and {A.22) by neglecting all terms of order

higher than s, such as the V • (ft^iM) term in Equation (4.21) and the ue\ • Vu^i
term in Equation (4.22). For example, the linearized continuity equation is

^ f l + f I O V . u , i = 0 . (4.24)
at

Our next step is to assume that we have plane waves propagating in the x direction
(i.e., k = kx) (see Equation (4.6)). Then we have

ne\(x, t) = he\ exp[i(kx — cot)], (4.25)

ue\(x, t) = ue\xcxp[i(kx - cot)], (4.26)
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4.2 Plasma oscillations 95
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Figure 4.1. Schematic for plane-wave Langmuir wave showing slablike electron density
perturbations.

and

EI(JC, t) = Eixexp[i(kx - cot)], (4.27)

where iie\,ne\, and E\ are plane-wave amplitudes that are independent of x and
t. Note that Ei is parallel to k because Langmuir waves are longitudinal. One-
dimensional (slablike) perturbations in the density ne (and therefore in the charge
density) naturally lead to longitudinal wave electric fields (see Figure 4.1). In the
x direction, positive and negative electron density perturbations (ne\) alternate and
give rise to negative and positive net charge densities, respectively. The slabs of
charge produce a wave electric field (Ei) that points from positive charge to negative
charge. This electric field then accelerates the electrons away from regions of excess
electron density.

The time derivative of an arbitrary plane-wave quantity, <2, gives

3
(4.28)

And the gradient operator, when applied to plane waves propagating in the x direc-
tion, can be written

+ikx. (4.29)

We now substitute the plane-wave expressions for ne\(x, t), ue\(x, t), and
EI(JC, t) into the linearized versions of Equations (4.22)-(4.24).

The continuity equation becomes

(4.30)

(4.31)

—io)he\ = —i

the momentum equation becomes

—imeo)ue\ = —eE\,
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96 Magnetohydrodynamics

and Gauss's law becomes

-—nei. (4.32)

We use Equations (4.30) and (4.31) to eliminate he\ from Equation (4.32), which
becomes

(4.33)

We now divide both sides by E \, rearrange terms, and obtain the following disper-
sion relation for Langmuir waves in a cold plasma:

co2 = atjp, (4.34)

where we define

/ nr\p^
(4.35)

<ype is called the electron plasma frequency. In cgs units, the electron plasma fre-
quency is given by

(4.36)

Equation (4.34) describes how the wave frequency varies versus k

co(k) = ±^ p e . (4.37)

In fact, the function a>(k) is independent of k\ and, hence, the group velocity
(Vg = dco/dk) is zero. In this case, we actually have an oscillation - a plasma
oscillation - rather than a propagating wave.

When ion motions are allowed, the relevant plasma frequency is given by

^P = \/«4 + < (4-38)

with

copi =

Because m,- » me (unless we assume positrons rather than massive ions - see
Problem 4.3), cop = &>pe is an excellent approximation.

Physically (see Figure 4.1), plasma oscillations occur because the moving elec-
trons have inertia so that they overshoot their equilibrium position (where Ei = 0)
and take a finite time to be decelerated. The deceleration occurs because of the
electric field when the electrons pile up in a different location. Electron inertia "op-
poses" the electric force associated with the pile up of electrons. This is a collective
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4.2 Plasma oscillations 97

phenomenon (i.e., involving large numbers of electrons acting together) in which
a large-scale electron field (Ei) is generated.

A useful expression (in SI units) for the frequency / p = cop/2n is given by

/ p = 9^/no (m-3) [Hz]. (4.39)

Example 4.1 A typical solar wind electron density at 1 AU is

no « 107m~3.

Using this density we find from Equation (4.39) that a typical plasma frequency for
the solar wind is

/ p ^ 3 x 104Hz = 30kHz.

The average maximum ionospheric electron density at Earth is

n0 « 1012m~3.

The plasma frequency given by Equation (4.39) for the ionosphere is

Electromagnetic waves (these are transverse waves, unlike Langmuir waves, which
are longitudinal) cannot propagate in a plasma if their frequency is less than / p (see
the appendix and Problem 4.1). Instead, waves impinging on a plasma medium from
the outside reflect at the location in the plasma where / = /p. Recall that the A M
(amplitude modulat ion) radio band is 0 .5-1.6 MHz , and hence these waves are
reflected from the terrestrial ionosphere. The F M (frequency modulation) radio
band has / > 88 M H z - well above the max imum ionospheric plasma frequency -
explaining why F M waves can propagate right through the ionosphere.

As we have jus t seen, a cold plasma can "support" Langmuir oscillations but not
Langmuir waves that propagate. However, wave propagation is possible in a warm
plasma. In a warm plasma (Te ^ 0) the electron pressure gradient force term must
be retained in the momen tum equation, and the dispersion relation can be rederived
(which you will do in Problem 4.2):

co2 = a)2
VQ + 3 £ \ 2

e , (4.40)

where the electron thermal speed is defined by

l e. (4.41)
The frequency co in Equation (4.40) (unlike in Equation (4.34)) now depends on
the wavenumber, and thus the group velocity,

4 (4.42)
co uph

Cambridge Books Online © Cambridge University Press, 2009Downloaded from Cambridge Books Online by IP 128.103.149.52 on Mon Sep 29 20:44:32 BST 2014.
http://dx.doi.org/10.1017/CBO9780511529467.007

Cambridge Books Online © Cambridge University Press, 2014



98 Magnetohydrodynamics

Wavenumber k
(arbitrary units)

Figure 4.2. Plasma/Langmuir dispersion relation. The group velocity, Vg, is the first deriva-
tive of co (k).

is nonzero and the phase speed, co/k, is equal to

(4.43)
^ (forsmalU).
k

The dispersion relation, co(k), is shown in Figure 4.2. The group velocity is just the
slope of the function co(k)\ we can clearly see that Vg = 0 at k = 0. And as k ->
oo, Vph = Vg - • V3ute. Plasma waves cannot exist with frequencies below COPQ.

4.3 The single-fluid equations and the generalized Ohm's law
4.3.1 Quasi-neutrality and the generalized Ohm's law

If we are dealing with a plasma phenomenon that is both large scale (scale size
L ^> AD) and has a relatively low frequency {co <̂C &>p), then the plasma is quasi-
neutral (ne = rii) on these length and time scales. Most interesting space plasma
phenomena satisfy these two criteria. We can then assume that the electron density
is equal to the total ion density:

nP = m (4.44)
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4.3 The single-fluid equations and the generalized Ohm's law 99

One consequence of Equation (4.44) is that we do not need separate continuity
equations for the electron and ion gases; a single continuity equation suffices.

A difficulty arises if we adopt ne = ni\ The assumed charge density is zero
(pc = 0), although the actual charge density must have very small deviations from
zero. With zero charge density Gauss's law, Equation (4.18), simply becomes
V • E = 0 and is no longer useful for determining the electric field. An alternate
means of finding E is required. The electron momentum Equation (4.3) can be
used for this purpose with the assumption ne = r%i. Solving Equation (4.3) for E we
obtain a relation called the generalized Ohm's law (GOL):

E = — ue x B Vpe H g H > vet(ue — ut)
nee e e ~^

(4.45)

Equation (4.45) specifies the electric field required to maintain quasi-neutrality
in a plasma. We can derive a simpler form of the GOL for a collisionless plasma
by neglecting the friction term (i.e., the term that includes the collision frequency
vet) and by neglecting gravity and the electron inertial terms (the latter is the last
term), which are proportional to the very small electron mass:

1
E = -ne x B V/v (4.46)

nee
motional ambipolar
electric electric field
field

The ambipolar electric field (or polarization electric field) is proportional to the
gradient of the electron pressure. The motional electric field (which is the first term
on the right-hand side as indicated) is associated with the frame of reference of the
electron gas. The electric field, E', in a reference frame moving at the electron flow
velocity, ue, does not include this term:

E' = E + u e x B = Vpe. (4.47)
nee

Now consider the component of this electric field parallel to the magnetic field,
E\\ = E • b, where b = B/|B| is the unit vector parallel to B. From Equation (4.46)
we find

1 1 dvPE\\ = (b Vpe) = —, (4.48)
nee nee ds

where s is the distance along a magnetic field line. If we further assume that the
electrons are isothermal with temperature Te, and if we use the equation of state,
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100

Equation (4.48) becomes

Magnetohydrodynamics

kBTe 1 dne
t\\ = e nP ds

(4.49)

Equation (4.49) indicates that a polarization electric field exists as a consequence of
gradients along B in the plasma density. The electric potential difference between
two points along the magnetic field due to the polarization is determined by inte-
grating Equation (4.49). If the electron temperature is independent of distance then
this potential difference just depends on the variation of the electron density and is
approximately k^Te/e over a typical scale length for significant density changes.
How can we determine the variation of the electron density ne as a function of dis-
tance si The electron density is just equal to the ion density «/, by the assumption
of quasi-neutrality, and U[ can be found by solving the fluid conservation equations
for ions (we will return to this shortly).

Suppose the ion density as a function of s (i.e., nx (s)) is specified. For example,
suppose rii increases as s increases (Figure 4.3). If no ambipolar field existed, and if
we assumed strict charge neutrality initially, an unbalanced pressure gradient force
on the electrons would exist and accelerate them so that the electrons would move
from the high-density region to the low-density region. A small charge imbalance
would then very quickly develop (ne = nt, but not exactly equal) as illustrated in
Figure 4.3. When the electric field resulting from the very small, but nonzero, charge
density just equaled the ambipolar field as specified by Equation (4.49) (or, actually,
by Equation (4.45) if all forces on the electron gas are included) then an electron
force balance would again be achieved with ne almost equal to n,- (but not quite -
the difference (n,- — ne) is exceedingly small - see Problem 4.4). The ambipolar,
or polarization, electric field thus holds the electron and ion gases together and
maintains quasi-neutrality. Theoretically, this electric field could be found using
Gauss's law; but, practically, the difference between ne and nt is so small (on
length scales L » AD) relative to the magnitude of ne that reliably calculating the
charge density for real problems is almost impossible.

Distance s

Figure 4.3. Ambipolar polarization electric field associated with electron pressure gradient
force (i.e., with the density gradient for isothermal electrons). The Coulomb/electric force
due to the minute charge imbalance counteracts the pressure gradient force.
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4.3 The single-fluid equations and the generalized Ohm's law 101

4.3.2 Single-fluid equations

A multi-ion species plasma can be described with the set of Equations (4.1)-(4.4)
plus the generalized Ohm's law. The generalized Ohm's law, Equation (4.45), tells
us what E is in terms of the variables ne, ue, and Te. For several singly charged
ion species, ne is equal to the sum of the densities of all ion species (this is a
generalization of Equation (4.44)):

ne = nt= ] T n s . (4.50)
all ion

species s

The summation in this equation is over all ion species in the plasma (e.g., H+,
O + , . . . ) . Wecan determine the density of each ion species, rc5, and the ion velocities,
ws, from the appropriate continuity and momentum equations. We also need to know
the temperature of each ion species, which can be found by using the appropriate
energy equation. The electric field in all these fluid equations can be taken from the
GOL. Our remaining unknown is the electron velocity xxe, which cannot be found
by using the electron momentum equation because that equation was "converted"
into the GOL and was instead used to find E. The electron flow velocity can be
found from the electrical current density and the calculated ion velocities if the
magnetic field is known.

At this point, we simplify the problem further by considering just a single fluid
that combines the electron gas and all the ion species. We start with the definition
of the total mass density.

p(x, t) = neme + ^2nsms, (4.51)
s

where the sum is over all ion species. The center of mass velocity of the plasma is
given by

u(x, t) = - nemeue + V nsmsus . (4.52)
p
ML s J

For a single ion species, we can find expressions for the mass density p and the
center of mass flow velocity u, starting from Equations (4.51) and (4.52):

p = neme + nimi = ne(me + m/) = nemt, (4.53)

u=meUe + miUi^ni. (4.54)
me + mi

The approximate versions of Equations (4.53) and (4.54) are quite accurate because
the electron mass is much less than the ion mass (me/mi <<£ 1). Our description of
the plasma also requires knowledge of the current density J:

J(x, t) = ^nsZseus - neeue, (4.55)
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102 Magnetohydrodynamics

where Zs is the charge number on ion species s. For a single ion species (with
Z = 1) Equation (4.55) becomes

J = nee(Ui -ue). (4.56)

The single-fluid mass continuity equation is found by mass-weighting the electron
and ion continuity equations (4.1) and (4.2) and using the definitions of p and u to
obtain

^ + V. (pu) = m/5I-. (4.57)
ot

A small source term, meSe, was neglected in this equation.
The single-fluid momentum equation can be derived by adding together the elec-

tron and ion momentum equations; the electric field cancels out during this oper-
ation. Note that this is equivalent to substituting the electric field from the GOL,
Equation (4.45), into the ion momentum equation (4.4). We have

3u i
— + u • Vu = -Vp + J x B + pg - pv(u - un) - Ptmt (u - un). (4.58)

Terms with the charge density pc were neglected, as were terms of order me/mt
(<£ 1). In the mass-loading term at the end of this equation we have supposed that
n%i —mn. The average momentum transfer collision frequency of ions with neutrals
is v = Vin, and henceforth this will just be denoted v. The total thermal pressure
is p = pe + pi; the electron and ion pressures can be found using the appropriate
energy equations discussed in Chapter 2.

A slightly more accurate version of the momentum equation (4.58) would also
include a term pcE on the right-hand side with E specified by the GOL. In this
case, we would need the following charge continuity equation for pc, which can be
derived from Maxwell's equations (Problem 4.5):

^ + V - J = 0. (4.59)
ot

Typically, an excellent approximation to the charge continuity equation is given by

V • J = 0. (4.60)

The charge continuity equation (4.59) with suitable boundary conditions can be
used to find the current density J. The magnetic field must also be specified and we
can use Ampere's law,

V x B = /xoJ, (4.61)

for this purpose. We have neglected the displacement current in Equation (4.61);
this is a good approximation for phenomena with time scales r such that r ~1 <5C a>p.
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4.3 The single-fluid equations and the generalized Ohm's law 103

There exists another way of finding the magnetic field, which is often much easier
to use, as will be considered in the next section.

One difficulty remains - the electric field given by Equation (4.45) is written in
terms of ue, but we really need it in terms of the variables u and J. The conversion
of Equation (4.45) into a new form of the generalized Ohm's law using u and J
is messy but straightforward (this can be done as an exercise by the ambitious
reader):

ambipolar
Hall polarization
term term

nee nee neel J
motional Ohmic electron inertial term
field term

The commonly used names for the various terms are indicated.
The Ohmic resistivity is given by

n = ^ (4.63)
neel

where ve is the total electron momentum transfer collision frequency (see Chapter 2),
which for a single ion species is ve — vei + ven (i.e., electron-ion Coulomb collision
frequency and electron-neutral collision frequency).

The electron inertial term, typically being quite small relative to other terms in
Equation (4.62), is often neglected. The Hall term results from using u rather than
ne in the motional electric field term; it is also often neglected. The ambipolar/
polarization term was already discussed. In a collisionless plasma, the resistivity is
zero (r] = 0); equivalently, the electrical conductivity a = l/rj is infinite. For the
opposite extreme of large 77, with Vpe = 0 and B = 0, the generalized Ohm's law
looks like the "ordinary" Ohm's law:

J = - E = orE. (4.64)
T]

If we retain the motional electric field but still neglect the rest of Equation (4.62)
we can write Ohm's law as

J = - ( E + u x B ) = iE ' , (4.65)
K) r\

where E' = E + u x B is the electric field in the plasma frame of reference (also
see Equation (4.47)).

The GOL has important implications for the time evolution of the magnetic field,
as we will see in the next section.
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104 Magnetohydrodynamics

4.4 Magnetic convection-diffusion ("freezing" law)

4A.I The magnetic induction equation {convection-diffusion equation)

The time evolution of the magnetic field is given by Faraday's law:

— = - V x E. (4.66)
dt

The time rate of change of B depends on the curl of the electric field. You will
not be surprised to find that we will use the generalized Ohm's law to supply E.
Starting with Equation (4.62), we can again neglect the electron inertial terms. And
even when the Hall and pressure gradient terms are not that small, the curls of these
terms are usually small. We are left with

E = - u x B + i/J, (4.67)

which is just Equation (4.65) rearranged.
Combining Equations (4.66) and (4.67) we obtain

3B
— = V x ( u x B ) - V x (ijj). (4.68)
dt

Using Equation (4.61) (Ampere's law) to eliminate the current density in favor of
the magnetic field we obtain the magnetic convection-diffusion equation:

— = V x ( u x B ) - V x (DBV x B), (4.69)
dt

magnetic magnetic
convection diffusion

where the magnetic diffusion coefficient is given by

-^^-2. (4.70)
2

Equation (4.63) for the resistivity was used in Equation (4.70). The two terms of the
right-hand side of Equation (4.69) have been labeled "magnetic convection" and
"magnetic diffusion" for reasons you will see below. We can simplify the magnetic
diffusion term if VD# x (V x B) = 0 can be assumed, as is true for a medium of
uniform resistivity. We can then employ a vector calculus identity and the Maxwell
equation V • B = 0 to get

V x V x B = V(V • B) - (V • V)B. (4.71)

equals 0

With the above simplifications, Equation (4.69) becomes
9B 9— = V x (u x B) + £>5V2B, (4.72)
dt

taking the form of a traditional diffusion-type equation in its last term.
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4.4 Magnetic convection-diffusion ("freezing" law) 105

4.4.2 Frozen-in magnetic flux

Let us compare the order of magnitude of the convection term (i.e., first term on
the right-hand side) of Equation (4.72) to the order of magnitude of the diffusion
term. That is, suppose L is the typical spatial scale over which the variables B and
u vary significantly, and suppose that r is the typical time constant for temporal
variation of B. The "dimensional" analysis of Equations (4.69) or (4.72) gives us
the following time constant (for DB = 0):

B uB
— ~ or r ~ Liu. (4.73)
r L

For u — 0 (no convection), another simple dimensional analysis provides us with
a typical magnetic diffusion time constant of

r ~ L2/DB. (4.74)

Thus, for a convection-dominated situation, the time scale for evolution of B is
directly proportional to the length scale L, whereas for a diffusion-dominated situ-
ation, the time scale varies as the square of L (as is typical for diffusion problems
of all types).

How do we determine whether magnetic diffusion or convection is more impor-
tant for a particular plasma regime? We compare the magnitude of the two terms
to obtain the magnetic Reynolds number Rm:

(convection term)

(4.75)

(diffusion term)
uB/L Lu

DBB/L2 DB'

The magnetic Reynolds number is analogous to the ordinary Reynolds number,
which is the ratio of the viscosity term to the convection/advection term in the
Navier-Stokes equation. The Navier-Stokes equation is a form of the momentum
equation that includes viscosity effects (i.e., the viscosity term is the second term
on the right-hand side of Equation (2.64)).

From Equation (4.75), we see that Rm is very large (Rm 2> 1) and convection dom-
inates for small values of the magnetic diffusion coefficient DB (i.e., for low resis-
tivity/high electrical conductivity). For large values of DB, the magnetic Reynolds
number Rm is small (Rm <c 1) in which case magnetic diffusion (i.e., Ohmic dis-
sipation of currents) dominates the time evolution of the magnetic field. However,
notice that even for small values of DB (as is the case for most space plasmas) a
small value of Rm results if the values of L and/or u are small enough. As we shall
see in Chapter 8, this can happen in a narrow current sheet such as the one located
at the Earth's magnetopause. For Rm = 1, magnetic convection and diffusion are
of comparable importance.
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c fast flow

Figure 4.4. Schematic of frozen-in magnetic field. Field line stays attached to particular
fluid parcels.

Magnetic flux is frozen into the plasma flow for very large values of the magnetic
Reynolds number (Rm -> oo). What is meant by "frozen-in magnetic flux"? The
convection-diffusion equation for D# = 0 simply becomes

3B
— = V x (u x B).
ot

If Equation (4.76) holds, then the following theorem also holds:

(4.76)

Theorem 4.1 The magnetic flux through a closed loop within the (infinite conduc-
tivity) fluid, and moving with the fluid, remains constant over time.

The proof of this theorem is not given here but can be found in many plasma
physics books such as are listed in the bibliography at end of this chapter (e.g.,
Siscoe, 1982).

Consider the schematic example shown in Figure 4.4. A field line (or part of a
field line) can be thought of as being "tied" to a particular parcel of fluid if Rm 3> 1.
The field line gets distorted and stretched as the faster fluid with its piece of the
field line outruns the slower fluid with its piece of the field line. The concepts of
magnetic convection and diffusion can also be illustrated for a one-dimensional
geometry, as we shall do in the next section.

4.4.3 One-dimensional convection-diffusion equation

A one-dimensional version of the magnetic convection-diffusion equation (4.72) is
easier to understand than the full equation. Assume that the magnetic field is only
in the x direction, B = B(z, t)x, and that the flow is only in the z direction with a
velocity u = u(z)z (see Figure 4.5).
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Figure 4.5. Simple one-dimensional geometry for magnetic convection and diffusion.

With this choice of coordinates, the convection-diffusion Equation (4.72) be-
comes

dB(z,t) 3 dB
— g ^ = --(uB) + D5 — . (4.77)

dt dz dzz

For u = 0 (and for Rm — 0), we have purely one-dimensional magnetic diffusion.
A localized magnetic field enhancement with scale size L decays with the time
constant given by Equation (4.74). In Problem 4.6, you are asked to solve Equa-
tion (4.77) (with u = 0) and find the time evolution of B for a given initial profile.
You will find that the small-scale variations of B decay most rapidly, as expected
from Equation (4.74).

Now let us assume that Rm » 1, in which case we can neglect the magnetic
diffusion term in Equation (4.77). Equation (4.77) then tells us that for a plasma
where uB increases with z, the magnetic field at a fixed value of z decreases with
time. In Figure 4.6 a steady-state scenario is shown. For this scenario, the plasma
slows down and then speeds up as it moves from left to right. The steady-state
(dB/dt = 0) solution of Equation (4.77) is obviously

u(z)B(z) = constant. (4.78)
As the plasma slows down (smaller values of w), the frozen-in field lines "pile up"
and B becomes larger. As the plasma speeds up (u increases), the field lines "spread
out" and B becomes smaller. A traffic jam on a highway is analogous - as the speed
of the traffic slows, cars pile up.

If the resistivity of a plasma is nonzero (i.e., Dg / 0), then magnetic flux can slip
or "thaw." That is, field lines are no longer tightly tied to, or frozen to, particular fluid
parcels. In this case, magnetic field enhancements tend to decrease due to diffusion
of magnetic flux away from the enhancement. Equivalently, the field enhancement
shown in Figure 4.5 is actually created by an electrical current in the y direction.
Magnetic diffusion means that the electrical current undergoes Ohmic dissipation.

You should be aware of a complication that occurs for many space plasmas.
The collisional resistivity in the solar wind and magnetosphere (but not in the
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B

B

B

Figure 4.6. Schematic showing frozen-in magnetic field for one-dimensional plasma flow.
A steady-state solution, uB = constant, is shown.

ionosphere) is virtually zero. And indeed we find that Rm > 1 almost everywhere
in these plasma environments. However, near narrow current layers a phenomenon
called magnetic reconnection takes place that requires Rm < 1 over a narrow region.
However, the magnetic reconnection regions studied in space physics have turned
out to be much broader than one would expect using the collisional form of the
resistivity (i.e., Equation (4.70)). It seems that some anomalous resistivity is re-
quired and is thought to originate from microscopic (but still collisionless) plasma
processes. A discussion of these processes is outside the scope of this text, but we
can still use the convection-diffusion equation, as well as address the phenomenon
of magnetic reconnection, by adopting suitable anomalous resistivity coefficients.
We discuss magnetic reconnection at the end of this chapter and in Chapter 8.

4.5 The magnetohydrodynamic equations
Let us write again the single-fluid equations (Equations (4.57) and (4.58)) but
include the diffusion-convection equation for the magnetic field:

dp
~dt+V

du
p— + pu • Vu = -V/7 + J x B + pg - pv(u - un)ot

-Pimtin - un), with p = pe +
3B
— = V x ( u x B ) - V x (DBV x B).
dt

Alternatively, in place of (4.81) we could use Equation (4.60):

V - J = 0.

(4.79)

(4.80)

(4.81)

(4.82)

Generally, we also need separate energy relations for electrons and ions, such as
those given in Chapter 2. However, for now we merely write the polytropic relation
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4.5 The magnetohydrodynamic equations 109

(see Equation 2.81) in terms of some reference density and pressure, po and po,
respectively:

p/p0 = (p/po)y, (4.83)

where y = 5/3 for an ideal monatomic gas and y = 1 for an isothermal gas.
Equations (4.79)-(4.83) together comprise the equations of magnetohydrody-

namics (i.e., the MHD equations). These equations can be used in many ways and
with many different approximations. Next we introduce the concept of magnetic
pressure.

4.5.1 Magnetic pressure

The term J x B in Equation (4.80) is the "Maxwell" force (per unit volume) on a
magnetized plasma due to electrical currents. You might recall from your elementary
physics course that the force on a length / of a straight wire, carrying current / , in
magnetic field B is given by

F = / l x B [N], (4.84)

where the direction of 1 is the same as that of the current. This is just the "electric
motor" force. J x B is the analogous force per unit volume on a plasma.

The current density J can be eliminated from J x B by using Ampere's law
(minus the displacement current):

J = — V x B .
Mo

Thus

J x B = —(V x B ) x B
Mo

( B2 \ 1= - V J + —B • VB (4.85)
\2floJ fJLQ

where a vector calculus identity, which can be found in most electromagnetics
textbooks, was used in the final step. Using Equation (4.85) we can rewrite the
momentum equation (4.80) as

p - 1 1 + pu • Vu = - V ( p + B2/2JJL0) + — B • VB
at /zo

+ pg - pv(u - un) - Ptmtiu - un). (4.86)

It is apparent that the quantity 52/2/zo acts on the fluid in the same manner as the
thermal pressure p\ hence, this quantity is called magnetic pressure'.

B2 \ N l
units o f - ^ r . (4.87a)units of z

2fi0 I m2

Cambridge Books Online © Cambridge University Press, 2009Downloaded from Cambridge Books Online by IP 128.103.149.52 on Mon Sep 29 20:44:32 BST 2014.
http://dx.doi.org/10.1017/CBO9780511529467.007

Cambridge Books Online © Cambridge University Press, 2014
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F = J X B « - B2 f
hr

Figure 4.7. Tension force F (per unit mass) on palsma due to curved magnetic field lines.
Curved field lines imply a current density J, as shown, due to Ampere's law. J x B is in the
same direction as — fc.

In cgs units the magnetic pressure takes the form

p B = — [dynes/cm2]. (4.87b)
Sn

B has units of tesla in Equation (4.87a) and Gauss in (4.87b). A gradient in mag-
netic pressure gives rise to a force on the plasma. The magnetic pressure gradient
requires a spatial variation of the magnitude of B, with the force pointing from
the high-field region to the low-field region. The concept of magnetic pressure will
become more clear to you shortly when we consider static force equilibrium for
a magnetized plasma. The importance of the thermal pressure term relative to the
magnetic pressure term in Equation (4.86) can be approximately judged by the ratio
of these two terms, which is given the name of plasma beta:

p__ nMT+T.)
pB B2/2fi0

The second part of J x B as given by Equation (4.85) (or in Equation (4.86))
represents the force on the plasma due to curvature of field lines. This is the magnetic
tension force, which we can write very approximately as

1 1 B2

—B • VB w (-fc), (4.89)
Mo Mo rc

where r c is the radius of curvature of the field lines; see Figure 4.7. An analogy can
be made to the force on a curved string under tension.

4.6 Static equilibrium

An important subclass of problems is one in which the plasma is stationary, or
almost stationary: u = 0. In this case, we can greatly simplify the momentum
equations (4.80), or (4.86), and obtain the following static force balance relation:

0 = -Vp + J x B + pg. (4.90)

Cambridge Books Online © Cambridge University Press, 2009Downloaded from Cambridge Books Online by IP 128.103.149.52 on Mon Sep 29 20:44:32 BST 2014.
http://dx.doi.org/10.1017/CBO9780511529467.007

Cambridge Books Online © Cambridge University Press, 2014



4.6 Static equilibrium 111

We have further assumed that the neutral gas (if it exists) has zero velocity (nn = 0).
Even Equation (4.90) can be further simplified using various approximations.

4.6.1 Hydrostatic balance

We first take the special case of an unmagnetized plasma (B = 0), in which case
Equation (4.90) becomes

Vp = pg. (4.91)

This is the (hydro)static force balance relation. This relation is especially useful
for horizontally stratified atmospheres (e.g., the planets and the Sun), for which
the acceleration due to gravity (downward) can be written as g = — gz. We have
g = 9.88 m/s2 for the Earth. In this case, all quantities are functions only of z
(altitude), and z is a unit vector directed up. An equation of state can be used to
express the pressure p in terms of the density p and temperature T: p = pRT.R
is the gas constant appropriate for the particular fluid/plasma under consideration.
Equation (4.91) becomes

~ = -Pg (4.92)
dz

~~JfP'
The solution of (4.92) is simply

(4.93)
Jzo RT(zr)

where po and zo are reference values of pressure and altitude, respectively. For an
isothermal atmosphere (T = constant) and constant g (true for a limited altitude
range), Equation (4.93) becomes

p(z) = poe-{z-Zo)/H (4.94)

with scale height

H = . (4.95)
8

The pressure decreases with height in an exponential manner with an ^-folding
length called the scale height H. For an isothermal atmosphere, the density p is di-
rectly proportional to p and also decreases with increasing altitude in an exponential
manner.

Example 4.2 (Hydrostatic balance in an isothermal neutral atmosphere) Con-
sider a neutral atmosphere with uniform temperature T = Tn and gas constant
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112 Magnetohydrodynamics

R = £B/m, where m is the mean molecular mass. For air on Earth, R is the
ordinary gas constant and we can write Equation (4.95) to obtain the neutral scale
height:

k ^ (4.96)
mg

Hn obviously depends on the parameters Tn,fh, and g. For Earth, Tn = 300 K, g =
9.88 m/s2, and m = 28.8 amu (20% O2 and 80% N2), in which case

Hn = 8.7 km.

For Jupiter, near the cloudtops, Tn = 300 K, m = 2 amu (mostly H2), and g =
23 m/s2. The scale height in the Jovian atmosphere is then

Hn = 52km.

The pressure for a plasma must include both the electron and ion partial pressures:
p = pe + pt = nek^{Je + 7}), where we have used separate equations of state
for electrons and ions plus we have assumed quasi-neutrality. Equations (4.92)-
(4.95) still apply if we identify T as (Te + Tt) and use R = 2kB/(me + mt). For
isothermal electron and ion temperatures, we can easily show (see Problem 4.7)
that for a horizontally stratified plasma near a planet (that is, for an ionosphere) the
electron density varies with altitude exponentially:

with plasma scale height

H , a * » ( r ' + l i>. (4.98)
Wig

Note that this plasma scale height expression includes both the electron and ion
temperatures, unlike the neutral scale height, which only included Tn. The presence
of the electron temperature term is really due to the electron pressure gradient term
in the generalized Ohm's law, Equation (4.45), that was used to eliminate E from
the momentum equation.

Figure 4.8 shows an electron density profile measured in the mid-latitude terres-
trial ionosphere (see the discussion in Rees, 1989). Hydrostatic equilibrium only
applies for altitudes above about 300 km, where a maximum exists in the electron
density profile. This ionospheric region above the maximum is called the topside
ionosphere. In the lower ionosphere, on the other hand, chemistry is the controlling
process. Note that the topside electron density has an exponential fall-off. The major
ion species in the ionospheric "F-region" is O+(ra = 16 amu). The temperatures in
the ionosphere are Te « 3,500 K and T\ ~ 1,500K; hence we can calculate from
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Figure 4.8. Electron density versus altitude in the terrestrial F-region ionosphere versus for
solar maximum conditions. Typical day and night profiles are shown. The locations of the
D, E, Fl, and F2 regions are indicated. Note that the standard convention in the atmospheric
sciences is to plot the dependent variable as the abscissa and altitude as the ordinate.

Equation (4.98) that the plasma scale height is

H» = 260 km.

4.6.2 Static pressure balance in a planar geometry for a magnetized plasma

Now we consider another approximation to the static force balance relation (4.90).
We neglect gravity (g = 0), so that the equation simply becomes J x B = Vp.
Furthermore, we assume a planar magnetic geometry (i.e., straight magnetic field
lines). In this case, we can omit the second term on the right-hand side of expres-
sion (4.85) for J x B, so that Equation (4.90) becomes

- B2/2fi0) = 0,

which can be integrated to give

p + B2/2/JLQ = constant in a direction normal to B

or

(4.99)

(4.100)

Pe + Pi + PB = Aotai = constant.

PB = 52/2/xo is obviously acting like pressure here. Equation (4.100) simply states
that the total pressure remains constant; any increase in magnetic pressure must be
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Figure 4.9. Static balance between thermal and magnetic pressure.

compensated for by a decrease in the thermal pressure or vice versa. Consider the
following simple illustration of a static pressure balance at an interface between a
magnetized, but very low density, plasma and a high-density unmagnetized plasma
(Figure 4.9).

To satisfy Equation (4.100), the following condition must apply at the interface
between the two media:

B2

(4.101)2/x0

where p is the thermal pressure in the bottom layer and B is the field strength in
the upper layer. However, you should not overlook that what is "really" balancing
the thermal pressure at the interface is the J x B force integrated over the narrow
extent of the interface. A narrow layer of electrical current, or a current layer, is
located at the interface. Its current density (per unit length), given by Ampere's
law, is

K = [
JAz

Jdz = B/fio, (4.102)

where Az is the thickness of the current layer. This current is called the diamagnetic
current. The "magnetic" (i.e., "electric motor") force per unit area (or pressure) is
given by

pB = [ (J x B) • zdz = |K x (B)A*| = — • f - ^ - - (4.103)
JAz Mo 2 2/xo

This magnetic pressure must equal the thermal pressure p in order to keep the
interface stationary (or static).

Example 4.3 (The Venus ionopause) The Venus ionopause provides a nice ex-
ample of a static pressure balance between magnetic and thermal pressures.
Figure 4.10 shows the magnetic field strength and the plasma density as functions
of height above the surface of Venus for three orbital passes of the Pioneer Venus
Orbiter (PVO). PVO was launched by NASA and went into orbit around Venus in
1978. The orbit was highly elliptical and so during an orbital pass the ionosphere
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Figure 4.10. Measured magnetic field strength (Pioneer Venus Orbiter magnetometer-
Russell and Vaisberg, 1983) and measured electron density (Langmuir probe) in the iono-
sphere of Venus for three orbits. The magnetic field is shown as a solid line and uses the
bottom scale. The electron densities are shown as solid dots and use the upper scale. (From
Russell and Vaisberg, 1983.)

was sampled above the periapsis (i.e., minimum) altitude, which was typically
145 km. Instruments on board measured plasma properties including electron and
ion densities and temperatures as well as the magnetic field (Russell and Vaisberg,
1983). The ionopause is defined as the region where the ionospheric plasma stops,
which is where the solar wind plasma begins.

The plasma just above the ionopause has very low density (and pressure) but is
highly magnetized due to the compression of the interplanetary magnetic field. Dur-
ing Orbit 186 the solar wind "pressure" was low so that the magnetic field strength
above the ionopause was only about 70 nT. In this case, the magnetic field strength
in the ionosphere itself is essentially zero, on the average. However, for Orbits 176
and 177 the solar wind pressure was high, as was the magnetic field strength above
the ionopause. Orbits 176 and 177 will not be discussed here, but we will return
to them in Chapter 7. The solar wind interaction with Venus is briefly discussed
in Chapter 7; what concerns us here is that a pressure balance between thermal
and magnetic pressure has been experimentally demonstrated to exist at the Venus
ionopause. You can also notice in Figure 4.10 that the ionospheric density (and the
pressure, because the electron and ion temperatures are approximately independent
of altitude) falls off exponentially as expected from hydrostatic equilibrium, except
in the ionopause region.

Now we calculate for Orbit 186 the magnetic pressure just above the ionopause
and the thermal pressure just below the ionopause and show that these are equal to
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each other - that is, we will now demonstrate that Equation (4.101) is satisfied. First,
note that above the ionopause B = 70 nT so that the magnetic pressure is B2/2fio =
2 x 10~9 N/m2. Next note that the electron density in the ionosphere, just below the
ionopause, is ne = 3 x 104 cm"3. The measured electron and ion temperatures are
Te = 3,800 K and Tt = 1,800 K, respectively. We find that the thermal pressure is
p = nek^(Te + 7}) = 2.2 x 10~9 N/m2, which is equal to the magnetic pressure to
within 10% (roughly the error of our estimates). Equation (4.101) is indeed satisfied
at the Venus ionopause.

4.6.3 Force-free magnetic equilibrium

Now we consider yet another case of a static force balance in which we suppose
that Vp & 0 and g = 0. Then the static force balance relation, (4.90), is simply

J x B = 0. (4.104)

This deceptively simple equation can be satisfied in one of two ways: (1) J = 0,
but this is not a particularly interesting case, and (2) J || B; that is, J is everywhere
parallel to B, which results in a force-free magnetic structure. A force-free structure
exists where the magnetic pressure gradient force part of J x B exactly counter-
balances the tension force part of J x B (see Equation (4.85)).

Especially interesting are cylindrically symmetric force-free structures with mag-
netic field vector B = B(r), where r is the radial distance from the axis. For this
functional form of the magnetic field, the force relation J x B = 0 is satisfied only if
J is proportional to B multiplied by some scalar function of r; that is, the following
relation must be satisfied:

V x B = a(r)B, (4.105)

where a(r) is some function only of r. In Problem 4.11 you are asked to findB(r)
for the special case of a = constant.

Force-free (or almost force-free) magnetic structures are present in many space
plasma environments, such as in the solar corona, in the solar wind, and in the iono-
sphere of Venus. Appearing in the measured magnetic field profile in the ionosphere
of Venus for Orbit 186 (Figure 4.10) are narrow spikes that are about 10 km across.
A detailed analysis of the magnetic field vector in one of these spikes reveals a
ropelike structure, as illustrated in Figure 4.11 (Russell and Elphic, 1979; Elphic et
al., 1980). These structures have been given the name magnetic flux ropes. Analysis
indicates that these ropes are essentially force free.

4.6.4 Stability

We have just finished a discussion of static equilibria. However, not all equilibria
are stable. A circus performer balanced on a high wire is in a state of equilibrium,
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4.6 Static equilibrium 111

Figure 4.11. Magnetic flux rope structure as deduced from Pioneer Venus Orbiter magne-
tometer measurements. The flux rope is dissected so that its internal structure is visible.
Reprinted with permission from Nature (Russell and Elphic, Nature, 279,616,1979). Copy-
right (1979) Macmillan Magazines Limited.

albeit an unstable one. A slight unfortunate move to the left or right and (barring
other action) the performer is no longer in a "static" equilibrium. Consider a ball
in the bottom of a bowl; it is in a stable mechanical equilibrium, in that a slight
departure from the point of equilibrium results in a restoring force (i.e., gravity in
this example) that maintains equilibrium. In contrast, a ball balanced on the top
of an overturned bowl is in an unstable equilibrium; a slight perturbation from
the equilibrium configuration results in an acceleration away from the equilibrium.
Neutral stability is also possible.

MHD equilibrium states can be stable or unstable. Let us consider the current
layer configuration pictured in Figure 4.9. Without gravity, this configuration is
neutrally stable. But suppose we introduce gravity. The equilibrium is stable be-
cause the low-/? and low-density plasma is on top and the high-/?, high-density
plasma is on the bottom. The stability condition can be verified by displacing a
small parcel of plasma from near the interface and determining whether the par-
cel seeks to return to its equilibrium position (i.e., stable) or not (i.e., unstable).
If the gravitational acceleration g is directed downward in Figure 4.9, a parcel
of nonmagnetized dense fluid that is moved up into the low-/?, low-density re-
gion is denser than its new surroundings and, consequently, has negative buoyancy
(see Problem 4.8 for a discussion of buoyancy). The force on this parcel is down-
ward, thus restoring it to its original equilibrium position. Similarly, a parcel of
magnetized plasma that is moved downward into the high-/? region becomes less
dense than the medium surrounding it and buoyancy results in an upward restoring
force.

Suppose though that the denser fluid lies on top of the less dense fluid (i.e.,
invert the two regions in Figure 4.9 but keep g directed down). Then an upward
(downward) displacement of a fluid parcel into the neighboring region results in
positive (negative) buoyancy that leads to an acceleration of the parcel away from
the equilibrium position (see Figure 4.12). This instability is called the Rayleigh-
Taylor instability and it occurs whenever a lighter fluid supports a heavier fluid in a
gravitational field. An example of a situation that is Rayleigh-Taylor unstable is a
layer of oil supported by a layer of water. You can demonstrate this yourself with a
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118 Magnetohydrodynamics

Figure 4.12. Rayleigh-Taylor instability of a heavy fluid supported by a lighter fluid.

container of oil-and-vinegar salad dressing. The Venus ionopause is stable against
the Rayleigh-Taylor instability.

Other types of fluid instabilities exist, such as streaming instabilities, in whch
plasma drifts can upset the equilibrium configuration of a plasma. An important
example of a streaming instability is the Kelvin-Helmholtz instability. Without
gravity, the diamagnetic boundary shown in Figure 4.9 is neutrally stable. But
suppose the plasma on either side of the interface is drifting tangentially at different
speeds; that is, suppose a velocity shear is present at the boundary. In this case,
ripples that might be present at the boundary could grow via the Kelvin-Helmholtz
instability.

The Rayleigh-Taylor and Kelvin-Helmholtz instabilities are examples of
macroscopic, or fluid (or MHD), instabilities, in which the distribution functions
/ are Maxwellians or drifting Maxwellians. Another category of instabilities com-
prises kinetic instabilities, in which certain kinds of deviations of the distribution
function from a Maxwellian distribution result in the growth of plasma perturba-
tions or waves. This topic will not be addressed in this book (although it was briefly
alluded to at the end of Chapter 3) and is left to more advanced books on plasma
physics and space plasmas.

4.6.5 Diffusion in a partially ionized plasma

For a partially ionized plasma, we can simplify the momentum equation (4.86) (or,
equivalently, Equation 4.80) by neglecting the left-hand side (i.e., the inertial terms).
This approximation is not as extreme as the static equilibrium approximation made
earlier in Section 4.6, because the friction and mass-loading terms, which contain
the flow velocity u, are still being retained. The now simplified momentum equation
can be algebraically manipulated to yield the following explicit expression for the
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4.6 Static equilibrium 119

plasma flow velocity:

u = un + — ( - V / ? + J x B + pg). (4.106)
pV + PYYl

Equation (4.106) in effect states that the ion-neutral friction force is in balance
with the sum of all other forces on the plasma, including Maxwell stresses, thermal
pressure gradient, and gravity.

Obviously, Equation (4.106) is applicable only to plasma environments in which
the abundance of neutrals is sufficiently high such that a reasonably large friction
term (pv) or mass-loading term (P,-m/) exists. Furthermore, Equation (4.106) is
also applicable only if the flow velocity (u) is small enough such that the left-
hand side of Equation (4.80) (i.e., the "inertial terms") is much smaller than the
largest individual term on the right-hand side. Note that if u = un, then the "static"
equilibrium expressed by Equation (4.90) is obtained. Often, nn & 0 is a good
assumption because neutral flow velocities are almost always slow in comparison
with typical plasma velocities.

Let us further simplify Equation (4.106) by (1) using Equations (4.85)-(4.87b)
plus a planar geometry to convert J x B to — V/?#, (2) assuming Pimi <^pv
(neglecting mass-loading), and (3) assuming un = 0 (stationary neutrals). We
obtain

u = - — ( V p ^ - p g ) , (4.107)
pv

where ptot = PB + P = B2/2JJLO + nek^{Te + 7}). Equation (4.107) is one version
of the plasma diffusion equation, and it is called the ambipolar diffusion equation.
This equation states that plasma flows in response to gradients in the total pressure
(plus gravity).

The diffusion equation is especially useful for determining the plasma flow in
planetary ionospheres. In particular, we can easily convert Equation (4.107) to a
form that is useful for plasma transport along a strong external magnetic field,
such as is present in the terrestrial ionosphere. First, we assume that g = — gz
(as in Section 4.6.1), where z is altitude. The magnetic field, B = fib, is almost
uniform within the relatively narrow ionosphere layer. The angle of inclination
of the magnetic field with respect to the horizontal plane, 9\, is given by (see
Figure 4.13)

sin(9i = +b -z . (4.108)

Starting from Equation (4.107), we can derive an equation for the plasma flow
speed (or diffusion velocity) along the magnetic field:

X (4.109)
m t n e v I d s
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B

g

Figure 4.13. Plasma diffusion along a strong magnetic field in a planetary ionosphere. u\\
is the plasma flow speed along B, and s is the distance along B.

A single ion species with mass m, has been chosen for simplicity. Distance along
the magnetic field is denoted s. The component of u = u\\ b in the z direction
is the most important flow component for a stratified plasma medium such as
a planetary ionosphere. Equation (4.109) can also be expressed (Problem 4.12)
as

•7 i 1 dne 1uz = -Dasin20i — — + — 1 3
ne dz Hp (Te + Tt)dz

(Te + Ti)\,

where the ambipolar diffusion coefficient Da is given by

£>,=

(4.110)

(4.111)

and where Hv is the plasma scale height, given by Equation (4.98).
We can combine Equation (4.110) and a one-dimensional version of the conti-

nuity Equation (4.79) to find an expression for the electron density ne:

dne 90; _
dt dz

(4.112)

The vertical plasma flux is 0,- = neuz and 5,- is the net plasma source.
Equation (4.112) combined with Equation (4.110) has the form of a standard

diffusion equation for an isothermal gas if g = 0 (Problem 4.12).
The ion-neutral collision frequency (v) is proportional to the atmospheric neutral

density, which decreases rapidly with increasing altitude. Consequently, Da, which
is inversely proportional to v, is small at low altitudes (and uz is small, even for
large density gradients) and large at high altitudes. At high altitudes it is very often
true that \uz/Da\ <$C l///p , in which case we can set uz = 0 (this approximation is
called diffusive equilibrium) and reobtain for an isothermal plasma the hydrostatic
profile given by Equation (4.97).

The ambipolar diffusion equation will be discussed again in Chapter 7. Note
that diffusion equations for individual ion species in a multi-ion species plasma
can be also be found by starting with Equations (2.61) and (2.64), instead of the
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4.7 MHD energy relations 121

single-fluid momentum equation, by neglecting the inertial terms (i.e., left-hand
side) and by solving for us.

4.6.6 Dynamic pressure

The inertial terms in the momentum equation are important for fast flows. We now
consider a steady-state (3/3^ = O),collisionless(v = 0), source-free (S; = P; = 0)
plasma. We also consider flow only in one direction with u = u(x)x and with the
magnetic field normal to the flow direction, B _L u. With these assumptions, the x
component of the momentum Equation (4.86) becomes

du 3 0
pu — = - — (p + B2/2/xo). (4.113)

ox ox
This equation can be further transformed (Problem 4.13) into

-~
dx

or

2 2 = Cu (4.114)

where C\ is a constant independent of x. That is, pu2 + p + B2/2/xo is constant
along a streamline.

If the total pressure p + B2/2/JLO decreases along a streamline, then pu2 must
increase as prescribed by Equation (4.113) (and vice versa). Thus, pu2 acts like
pressure and is given the name dynamic pressure. Although the simple expres-
sion (4.113) is not strictly applicable to more complicated flow patterns, pu2

nonetheless provides a good estimate of the relative importance of the pu • Vu
term to other terms in the MHD momentum equation. This term is important if the
ratio of pu2 to the thermal pressure p is large; this ratio is closely related to the
sonic Mach number, which we will discuss in Section 4.8.

4.7 MHD energy relations

Both electron and ion pressures appear in the MHD momentum equation (4.80), and
thus a complete treatment of a plasma must include energy relations for both plasma
species. Often, in place of a complete energy equation, a simple polytropic relation
is used to relate the total thermal pressure p to the density p (see Equation 4.83) or
to relate the partial pressure of an individual species, ps, to its density ps (see Equa-
tion 2.81). However, sometimes a more accurate treatment of the plasma energetics
is required.

The energy equations we saw in Section 2.4.5 can be used separately for electrons
and ions. The types of approximations that are reasonable can be quite different
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for electrons than for ions. For ionospheric plasmas, the heat conduction Equa-
tion (2.82) is usually appropriate for both species; even the local heat balance
relation (2.84) often provides an adequate description of the energetics in the lower
ionosphere (altitudes less than 200 km) where the neutral density is high. Local
heat balance is often an especially good assumption for the ions if the ionospheric
flow is slow (i.e., subsonic, u <JC w/ therm)- However, for fast flows (u > w; therm), it
becomes necessary to use a more complete energy equation such as those given by
Equations (2.73), (2.78), or (2.79).

An equation for the "total" energy (electron thermal energy and bulk kinetic en-
ergy, ion thermal energy and bulk kinetic energy, and electromagnetic field energy)
is often convenient for MHD problems where we really don't wish to separate out in-
dividual plasma species but would rather just deal with the total thermal pressure p.

4.7.1 Combined MHD energy relation

We now combine the energy relation (2.73) as applied to both electrons (s = e)
and ions (s = /). Energy density terms for electromagnetic fields (internally or
externally generated) must be included. The total energy density (units of J/m3) of
the plasma is then given by

W = ^ Ps\Us + -u] + C/grav + ~SQE2 + fi2/2/Z0, (4.115)

where you recall from Chapter 2 that the internal energy density for species s is
psUs = [l/(Ys — l)]Ps, Ĉgrav is the gravitational potential, (l/2)soE2 is the energy
density associated with the electric field, and B2/2/JLO is the energy density associ-
ated with the magnetic field (as well as being the magnetic pressure). Recognizing
that the electron mass density, pe = mene, is much less than the ion mass density,
pt = n,-mi, we can write the total plasma energy density as

1 1 1 9 1 9 9
W 2^ n _i n . _L nil1 A- n i l -I P^F2 -U RZ 10 iin

Ye — 1 Vj — 1 2 2
Y Y (4.116)

1 1 o_ ^P ^P

where p = pi, p = pe + pi, Ye = Yi, and u = U[ (see Equations (4.51)-(4.54)).
The first term in the combined energy relation should be 3 W/dt, where W is given

by Equation (4.116). The next term is the combined electron and ion divergence
term from Equation (2.73):

^ V-( Ye Yi 1 9 \
UePe + UiPi + -Utpuf + pilj f/grav , (4.117)

Ye-l Yi-l 2 )
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where ye and yi are the ratios of specific heats for electrons and ions, respectively.
A further simplification of Equation (4.117) is obtained if we take ye = yt (calling
it simply y) and if u^ = U; = u:

C/grav I (4.118)y - 1 p ' 2" ' ^gravJ

The presence of the electromagnetic energy density in Equation (4.116) also
necessitates the inclusion of a transport term for electromagnetic energy (i.e., V • S
must be inlcuded, where S is the Poynting vector) and the inclusion of a source/sink
of electromagnetic energy density, —E • J. The appendix provides a review of this
topic. Putting all the parts together, we find the following MHD energy relation:

p . . 1 _o B2

(^) -E-J, (4.119)
coll V Ot / c o i i

where Qe and Q, are conductive heat fluxes for electrons and ions, respectively.
Electron and ion collisional energy terms are also included on the right-hand side
of (4.119). More details on the ion collision term can be found in Chapter 2.

4.7.2 Bernoulli's equation

A simple energy relation (2.80) was found earlier for the case of steady flow with
no collisional sources or sinks of heat and with no heat conduction. An analogous
relation can be derived from Equation (4.119) for u l B :

Y P 1 2 B2

I—u + f/grav H = constant along a streamline, (4.120)
y - 1 p 2 /zop

where the Poynting vector is approximated with only the motional electric field
terms in the generalized Ohm's law. For u parallel to B we have the same expression
but without the B2//xop term. Equation (4.120) is Bernoulli's equation, which
has wide applicability (and is not just for one-dimensional flow as is the case for
Equation (4.114)). But both Equation (4.114) and Bernoulli's equation (4.120) tell
us that as a fluid parcel slows down its pressure (and temperature) increases; or,
conversely, as a fluid parcel speeds up, its pressure decreases.

4.8 MHD waves

Earlier in this chapter we considered the topic of Langmuir waves (i.e., plasma
oscillations and waves). The frequency for this wave mode was shown to be close to
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