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2

Introduction to kinetic theory

A gas consisting of charged particles is called a plasma, although the use of the term
is often restricted to charged particle gases in which collective phenomena, such
as plasma oscillations, are more important than collisional phenomena. Collisions
generally involve the short-range interactions of discrete particles, whereas collec-
tive phenomena involve large numbers of particles working in unison. The charged
particle species in most plasmas are positive ions and negative electrons, although
negative ions are also present in the D-region of the terrestrial ionosphere. Fully ion-
ized plasmas contain only charged particles, whereas partially ionized plasmas also
contain neutral gas. The solar wind plasma — that is, the interplanetary medium —
is a fully ionized plasma; the ionosphere is a partially ionized plasma. A variety
of methods have been developed to describe plasmas. Kinetic theory uses particle
distribution functions to describe plasmas, whereas fluid theory (which includes
magnetohydrodynamics or MHD) only uses a few macroscopic quantities derived
from the full particle distribution functions. Because the subject of kinetic theory is
largely outside the scope of an introductory book on space physics, this book will
primarily use fluid theory to explain plasma phenomena in the solar system. How-
ever, a short introduction to kinetic theory and the derivation from kinetic theory of
the fluid equations is provided in this chapter. More detailed treatments of kinetic
theory can be found in the references listed at the end of the chapter.

2.1 The Boltzmann and Vlasov equations

Classically, a gas can be described by specifying the position and velocity vectors of
each particle in that gas (i.e., all the electrons and ions). Let us denote a particular
particle by the index « = 1,..., N, where N is the total number of particles
in the system (or gas). Typically, N /2 of the particles are electrons and N /2 are
ions. The position vector of particle « is X, = (X4, Yo, Z¢) and the velocity vector
IS Vo = (Vxq» Vya» Vza), Where both X, (t) and v, (¢) are functions of time. Each
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10 Introduction to kinetic theory

particle o obeys Newton’s second law for a classical (nonquantum) system:

dv, dx,
meg— =F, and — =y, 2.1
« a py « 2.1)
where m,, is the mass of particle @ and F,, is the total force on particle o at the
location of the particle at time . The force F,, includes contributions from gravity
as well as electric and magnetic forces. In a plasma, the most important force is the

Lorentz force,
Fa = 4o (E + Vo X B)’ (22)

where g, is the charge of particle ¢, and where the electric field intensity, E, and the
magnetic flux density, B, must be evaluated at the time and location of the particle.

Vectors E and B in general include both contributions from sources external to
the plasma and from sources associated with all other particles within the plasma.
Let us consider a plasma in which only the internal electrostatic force is important
and the force on the particle, «, is just the Coulomb force, F, = ¢g4E. The electric
field is evaluated at x, (¢) and is given by

1 X gp(%e — Xp)
E = . 2.
(% (1)) mog % %o 2.3)
B#a

The sum in this equation is over all particles other than « itself.

The full particle description requires far too much information (6N numbers at
each time 1) to be practical for realistic-sized systems where N > 10", even for
a small-sized plasma. The chief goal of the field of kinetic theory is to reduce this
information to manageable proportions using statistical methods, while preserving
the essential information associated with macroscopically observed quantities. A
key product of kinetic theory is the Boltzmann equation, which will be discussed
below, but which will not be derived here — this being beyond the scope of this
book.

2.1.1 Single-particle distribution function

Most of the essential information about a plasma is contained in the single-particle
distribution function, fs(X, v, t), where the position vector x, the velocity vector v,
and time ¢ are all independent variables. A separate distribution function is required
for each species of plasma particle, s, such as electrons or ions of a particular
mass. Phase space encompasses both ordinary space (x) and velocity space (v) and
has six dimensions. Thus, to specify a point in phase space, (x, v), one requires
six quantities (x, y, z, Vx, Vy, v;). The single-particle distribution function (or just
distribution function), f;(x, v, t), is defined as the number of particles per unit
volume (of phase space) that are present, at time ¢, in an infinitesimally small
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2.1 The Boltzmann and Viasov equations 11

Volume in Phase Space

d3x d3v

(%, V)

A 4

Figure 2.1. Schematic showing part of phase space and a small volume centered at the point
(X, V) = (xv yv Z7 vx’ vyv vZ)'

volume of phase space (AV = AxAyAzAv,Av,Av;), centered at the point in
phase space, (X, v):

i # particles of type s in AV
Sy = lim Bpericsopes AT,

In other words, f; is the number of type-s particles situated between x and x + Ax,
and also between y and y+ Ay, and z and z+ Az, and between v, and v, + Av,, etc.
We are dealing with a statistical distribution here — it does not matter which particles
of type s (i.e., which electrons) are in this volume because all these particles are
identical. The schematic in Figure 2.1 illustrates the concept of this phase space
density. The units of f; are s*>/mS.

The integral of f;(x, v, ?) over all velocity space yields the number density of
particles of type s. The density n; is a function of position and time:

2.4)

ne(x, 1) = / fo(x, v, 1) d°v

oQ o] o0
:/ / / fS('x’ y’Z7 v)C7 Uy, vzvt)dvxdvydvz. (25)
—00 J =00 J =00

The single particle distribution function can be found by solving the Boltzmann
equation, which can itself be derived from the individual particle picture using the
techniques of kinetic theory.

2.1.2 The Boltzmann equation

The Boltzmann equation can be written

0 8fs
£+V-st+a~vvfs=(-i) , (2.6)
ot ot collision

where a is the acceleration of a particle of type s, located at position x and possessing
velocity v. Note that a includes the eftects of all noncollisional forces on the particles
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12 Introduction to kinetic theory

including gravity. For a plasma, the most important force is the Lorentz force; the
acceleration of a particle of species s with charge g, is given by

ax, v, 1) = (gs/m)IEX, 1) + v x B(x, 1)]. 2.7

The electric and magnetic fields in expression (2.7) are not the complete fields,
such as those given by Equation (2.3), but are macroscopic, or average, fields that
do not include the microscopic fields associated with discrete particle collisions.
These macroscopic fields include long-range average contributions from the plasma
particles in a statistical sense. E and B can be found using Maxwell’s equations; the
charge density and current density in these equations are also macroscopic quanti-
ties, which can be specified in terms of the single-particle distribution function f;, as
will be discussed later. E and B can also include contributions from external sources.

Collisional effects (and the microscopic details of the electromagnetic field) are
included in the collision term on the right-hand side of the Boltzmann equation.
Coulomb collisions between charged particles involve the long-range electrostatic
force, which varies as the inverse square of the particle separation (Equation (2.3)),
and this type of interaction requires careful treatment. Formally, the collision term
includes the two-particle correlation function, which is proportional to the proba-
bility of two particles strongly interacting with each other (Nicholson, 1983; Krall
and Trivelpiece, 1973). We will only use simplified versions of the collision term in
this book; the reader is referred to the references listed at the end of the chapter for
a more complete treatment of the Boltzmann equation and the collision term. An
especially simple form of the collision term is the Krook collision term (Bhatnagar,
Gross, and Krook, 1954), or BGK collision term:

(%) — _fs _fsM. (2.8)
collision

3t Teoll

Here fium is the Maxwell-Boltzmann distribution function (or Maxwellian) for par-
ticle species . Teof1 is a collision time — that is, the average time between collisions
for a given particle. The BGK collision term is inaccurate but does have the desir-
able property that a distribution function that is non-Maxwellian at some initial time
evolves into a Maxwellian in a period of time of the order of t.o;. The Maxwellian
distribution will be described mathematically in a later section. Collisions do indeed
have this effect on the distribution function, although the details of this evolution
are more complex than is suggested by expression (2.8).

Now let us consider a few aspects of mathematical notation. V = £9/0x +
§9/0y +120/0z is the gradient operator, and Vy = X 3/dv, + §9/0v, +23/0v; is
the gradient operator in velocity space. The product v - V can be also be expressed
in component notation as

3 3 9 3 9
V= v, — — = — 2.9
M T TR ’ax, {: ox, @9
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2.1 The Boltzmann and Viasov equations 13

All the expressions in Equation (2.9) are equivalent. Note that the index j runs
from 1 to 3. For example, v = vy, v2 = vy, and v3 = v,. The second to last form
uses the summation convention in which the presence of repeated indices (e.g., j)
is interpreted as a summation over that index from 1 to 3.

The left-hand side of Equation (2.6) is just equal to the total derivative of f; in

phase space:

D 8

Dosts _ <ﬁ> (2.10)
Dpst 8t collision

The Boltzmann equation simply states that the total time derivative of the single-
particle distribution function equals the time rate of change of the distribution
function due to collisions. If the plasma, or gas, is collisionless, then the right-hand
side of Equation (2.10) is zero and the total derivative in phase space is zero. In this
case, the phase space density of particles of type s in a small volume of phase space
remains constant as this volume moves through phase space on a trajectory specified
by the 6-dimensional “vector in phase space” (v, a). The Boltzmann equation with
the collisional term equal to zero is called the collisionless Boltzmann equation, or
also the Vlasov equation:
dfs

s v v+ B ELvxB) -V f, = 0. @.11)
at myg

The Vlasov equation provides the starting point for much of plasma physics. It is
a deceptively simple-appearing equation that proves surprisingly difficult to solve
for most situations.

2.1.3 The convective derivative

Some insight into the total derivative in phase space can be obtained by studying the
total derivative (or convective derivative) in ordinary space. Consider a fluid (such as
air, water, or a plasma) for which the flow velocity is given by u(x). u(x) is the bulk,
or average, velocity of a small volume of the fluid (i.e., the “wind” velocity) located
at position x. The total derivative of some quantity Q (e.g., density, temperature,
etc.) is the time rate of change of Q in a frame of reference moving with the fluid
(with velocity u). The convective derivative is equal to
DQ 30

== .V, 2.12
D o THVC (12)

where Q = Q(X, t) is in general a function of both x and ¢.

In one dimension (e.g., u=u,X) and for a steady-state situation (in which
0Q/ot = 0), the total derivative becomes DQ/Dt = u,3Q/0x. The total time
derivative of Q now equals the rate of change of x of a fluid parcel moving with
the fluid (u, = “dx/dt”), multiplied by the derivative of Q with respect to x. For
example, for a person on a raft floating down a river with speed u,, the rate of
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14 Introduction to kinetic theory

. X

Figure 2.2. A raft floating down a river with speed u, passes trees on the riverbank. The
tree density Q is greater downstream than it is upstream. The raft is carried by the river from
a region of low tree density to one of high tree density; that is, the tree density increases
with time in the raft’s frame of reference.

change — for the rafter — of the density of trees, Q, on the river bank adjacent to the
raftis just equal to u, multiplied by d Q/0x. (See Figure 2.2.) Note that 0 9 /9t = 0,
since trees are immobile in the frame of reference of the Earth (although not in the
raft’s frame of reference).

2.2 The Maxwell-Boltzmann distribution function
2.2.1 Examples of distribution functions

An infinite number of different distribution functions satisfy the Boltzmann equa-
tion. For example, a uniform gas of electrons all moving in the x direction with
speed u,q is described by the beamlike distribution function,

fe(X, v, 1) = nod(vx — ux0)8(vy)d(v,), (2.13)

where 6 (x) is the delta function. The constant ng is the electron number density as
can be seen by substituting the distribution (2.13) into Equation (2.5) (see Problem
2.1).

The shell distribution is another example of a distribution function. For example,
consider a uniform gas of ions that move in all directions with equal probability
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2.2 The Maxwell-Boltzmann distribution function 15

(i.e., an istotropic distribution). All tons in a shell distribution have the same speed
v = |v| = vy, which can thus be written as

fi(x, v, 1) = (no/4mwvd)8(v — vo), (2.14)

where ng is the ion number density. Although beam and shell distributions are
solutions of the Boltzmann equation at a given time, they do not remain beam and
shell distributions at later times but eventually evolve into Maxwellian distributions
in a time period roughly equal to the collision time.

2.2.2 Maxwellian distribution functions

The Maxwellian distribution for particles of type s is given by the expression

)3/2ex [-— %msvz] (2.15)
Pl e I’ '

Fim(x, v, 1) = ny(x, ’)(m;n

where v? = vf + v§ + vzz. The density #; is a function only of position and time
and can be found by integrating fim over all velocity space (see Problem 2.2). The
temperature of species s is also a function of position and time, 7; = T(x, t). The
probability of finding a particle of type s decreases exponentially with increasing
v (or, equivalently with increasing kinetic energy) for a Maxwellian. The function
fsm falls off more rapidly for a cold gas (low temperature) than for a hot gas (high
temperature) according to Equation (2.15). Note that the Maxwellian distribution
is isotropic — that is, fsm depends only on the magnitude of the velocity vector v
and not on its direction.

A distribution that is closely related to the Maxwellian distribution is the drifting
Maxwellian distribution for which the gas as a whole moves in some direction
with a constant velocity. In this case, the distribution function still looks like the
Maxwellian specified by Equation (2.15) but in a frame of reference moving with
the uniform velocity vg. The distribution function for a drifting Maxwellian is given
by Equation (2.15), but with v? replaced by |v — vo|2.

A reduced, one-dimensional Maxwellian distribution can be obtained by inte-
grating fqu over all y and z velocity components:

[oe] o0
gSM(X9 Uy, t) = / / fsM(X, v, t) dvydvz
—00 J—00
172 2
Mg mgv
= 9t - 2 . 216
(i) ool -gn] el

The function g\ represents the probability of finding a particle of type s with x
component of the velocity lying between v, and v, +dv;. Like the full Maxwellian,
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16 Introduction to kinetic theory

Reduced Maxwellian Distribution
1.2

1.0+

0.8

0.61

gV ATV

0.4

0.21

0.0 . . . . .

Vx/ Vth

Figure 2.3. Reduced Maxwellian distribution function g,y divided by n {7 vg]/? plotted
versus v, divided by the thermal speed vy,.

gsM 1s an exponential function (see Figure 2.3). The maximum of g\ is located at
vy = 0 and g;m decreases one e-folding as v, increases from 0 to v, = vy. The
thermal speed is defined by

v = [2kp Ty /m;]"/2. (2.17)

The thermal speed is inversely proportional to the square root of the mass; thus,
electrons have a much larger thermal speed than do ions with the same temperature.

2.2.3 Equilibrium Maxwell-Boltzmann distribution

The Maxwellian distribution function given by Equation (2.15), in general, is not an
equilibrium distribution function and is a function of time via the time dependence
of the density and temperature. In contrast, the Maxwell-Boltzmann distribution
for a gas in thermodynamic equilibrium is independent of time and can be expressed
in terms of the total energy E of a particle as

fsmx, v) = fsm(0, 0) exp[—E/kgT], (2.18)
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2.3 Macroscopic variables 17

where fim(0, 0) is a reference distribution function. The particle energy, E, for a
static electric field is given by

E = 1/2mv* + ¢,V (%), (2.19)

where V (x) is the electrostatic potential at position x. Equation (2.18) can be re-
written as

fim(x, v) = [noe—qsV(x)/KBT]e—msvz/ZkBT

(2.20)

ng(X) = nge~9sY ®/ksT

where ng is the density at x = 0. The density is proportional to ng, as well as to
an exponential called the Boltzmann factor. We will use this thermal equilibrium
distribution near the end of the chapter to derive a shielding length scale in a plasma.

2.3 Macroscopic variables

For many applications we do not need to know the details of the distribution func-
tion. It is sufficient to work with a limited number of macroscopic variables. Veloc-
ity moments of the distribution function have traditionally been used (cf. Burgers,
1969; Gombosi, 1994) to define these basic macroscopic (or fluid ) variables. These
macroscopic variables are functions only of position (and not velocity) and can be
considered to be “measurable” quantities. The nth moment of the single particle
distribution function f;(x, v, t) is defined by

M"f, = / VA%, v, 1) dY. .21

The zeroeth moment (n = 0) is just the number density, n;(X, t), as given earlier by
Equation (2.5). The first moment (n = 1) is just the (net) particle flux of species s:

I(x, 1) = / Vfo(x, v, 1) d’V. (2.22)

The particle flux has units of m~2s~! and is a vector quantity. The integrals in
Equations (2.21) and (2.22) are over all of velocity space. In component notation
(j = 1-3), Equation (2.22) becomes

Iy = /vjfs(x, v, t)d3v

x0 o0 o0
= [ [ vy s v v ndudu dv., 223)
—00 J—00 J—00

The bulk flow velocity of species s is defined as the average velocity and is expressed
in terms of the flux as

u(x, ) = (v) = Is(x, 1) /ns(X, 1). (2.24)
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18 Introduction to kinetic theory

The velocity u will often carry the species subscript s (uy) if the context is not clear.
Note that the average of a quantity Q is defined as

1 3
(Q) = — / Ox, v, 1) fu(x, v, 1) d°V. 2.25)
g

The second moment of the distribution function is related to the pressure tensor
of species 5. The pressure tensor is best found by using the peculiar - or random —
velocity, which is defined in terms of the total individual particle velocity and the
bulk flow speed:

c=Vv-—u (2.26)

The peculiar velocity and the total velocity are the same if the gas as a whole is
stationary. The pressure tensor is proportional to the second moment of f; and can
be calculated using c rather than v:

f’s(x, t) = mgng{ce) = my /c cfs(x,v, 1) d’v. 2.27)

Pg;; constitutes a 3 x 3 matrix. In component notation, the (i, j) element of the
pressure tensor Pg(x, ¢) is given as

Rﬁxﬂ:nh/qqﬂmvmw%. (2.28)

In Equation (2.28) the substitution v = ¢ + u can be made, and the integral can be
evaluated using the peculiar velocity — d3c — instead of d>v. A scalar pressure p;
is defined as one third of the trace of Py;;:

3
. 1
Ps = TI‘PS = E stj = §stj- (229)
j=1

Q| =
W =

The pressure tensor for an isotropic distribution contains only one independent
quantity (i.e., the scalar pressure) and can be expressed in terms of the following
matrix:

ps 0 O
P.=(0 p, 0], (2.30)
0 0 ps

where the scalar pressure p,, = pyy = p;; = ps is given by

1 o0
mmﬂng/~§ﬁmq0M¥&. (2.31)
0

The distribution function in Equation (2.31) is isotropic and is solely a function of
the magnitude of the peculiar velocity. A physical interpretation of pressure will be
given later. The pressure p; has units of N/m?, which is the same as J/m>. Equations
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2.4 The fluid conservation equations 19

(2.30) and (2.31) can be applied to the shell distribution given by Equation (2.14) as
well as to the Maxwellian distribution. Using expression (2.31), the scalar pressure
for the Maxwellian distribution can be shown (Problem 2.3) to be equal to p; =
nskpTy; this is the equation of state of an ideal gas, which relates the pressure of
species s to the density n; and the temperature Ts.

The heat flux vector for species s is closely related to the third moment of the
distribution function and is given by

Q(x,1) = %ms / cc?fi(x, v, 1) d°v. (2.32)

The SI unit for the heat flux is W/m?. Most fluid theories in practical use do not
go beyond five moments. Rather than carry out the integral in Equation (2.32), it is
usually easier to represent the heat flux with a simple phenomenological expression,
as will be done later in the chapter.

2.4 The fluid conservation equations

Now that macroscopic variables have been defined, we need some prescription for
determining them, without having to undertake the very difficult task of solving the
Boltzmann equation. Equations that are easier to solve than the Boltzmann equation
can be found by taking moments of the Boltzmann equation. The nth moment of
the Boltzmann equation can be represented by

[elEsvvnravg=(L) Jev e
d ot collision

We will only consider the zeroeth, first, and second moments here. Furthermore,
little attention will be devoted to the collision terms.

2.4.1 Continuity equation

Now we evaluate the zeroeth moment of each term of the Boltzmann equation. The
first term of Equation (2.33) with n = 0 becomes

8f3 3 8ns
sd’V 2.34
3t = ot /f 234

Note that the order of the time derivative and the 1ntegra1 over velocity has been
reversed — this is allowed because time and velocity are independent variables. The
definition of density given by Equation (2.5) was also used.

The zeroeth moment of the second term of Equation (2.33) gives

/V-std3v - / %(vjfs)dg'v
J

=0 / v fi dv. (2.35)
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20 Introduction to kinetic theory

Component notation and the summation convention were used in the first line of
Equation (2.35), and in the second line the order of the derivative and integral were
switched. The integral on the second line is just the definition of the net particle
flux, as given by Equations (2.22) and (2.23). The particle flux is equal to n,u;,
where u; is the average (or bulk) flow velocity of species s, whose jth component
is u;. Equation (2.35) then becomes

d
= a;[nshjj)] = E

=V - (nsuy). (2.36)

[nsusj]

Vector notation is again used in the second line of Equation (2.36). This equation
indicates that the second term of the zeroeth moment of Boltzmann’s equation is
equal to the divergence of the net particle flux of species s.

We can write the acceleration term in Equation (2.33) as

/a~vasd3v=/ 3fs

fs afs afs
_/ / / (a"avx yauy+ﬂ'atjz)alv"d”yd”Z
(2.37)

It is sufficient for us to evaluate the first term of Equation (2.37) (the other two
terms give identical results):

o] s an 29

The integral over v, (i.e., the term in brackets in this expression) is easy to evaluate
if the x component of the acceleration, a,, does not depend on v,, as is indeed true
for the Lorentz force. Then

©  dfs _ % 9fs _ o
l /_ oo axadvx} - [ax /_ ) avxdvx] — [/, =0, (2.39)

where we have used the fact that the distribution function is zero at vy, = +00. Thus,
the acceleration term of the zeroeth moment of the Boltzmann equation equals zero.

We are left with the task of determining the zeroeth moment of the collision
term, which we call S;. It will be demonstrated below that S, is the net source
per unit volume of particles of type s (regardless of velocity) due to collisions.
Putting together Equations (2.34) through (2.39), we obtain the familiar continuity
equation,

9
% FV-(nou) = (2.40)
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2.4 The fluid conservation equations 21

A2 \/a =¥

/‘*
’? o
=5

Yy

Figure 2.4. Volume of space V in a fluid of species s, with flow speed u,. The surface of
the volume is designated S. The total number of particles of species s in the volume is N;

The integral form of the continuity equation is useful for physical interpretation. We
integrate both sides of Equation (2.40) over some fixed volume V for a fluid moving
with bulk flow speed u; (Figure 2.4). The volume integral of the time derivative
of the number density, dn;(X, t)/dt, is just the time derivative of the total number
of particles of species s in the volume, N;. The volume integral of the divergence
term can be converted to a closed surface integral using Gauss’s integral theorem,
which gives

/ V- (nyuy) d®x = f nou, - dS, (2.41)
\% S

where S designates the closed surface and the vector dS is a differential surface
element oriented normal to the surface. Recall that n;u; is the particle flux I'y, and
thus Equation (2.41) gives the total net flux of particles (units of s~!) through the
closed surface S — this is positive for a net flux of particles of type s out of the
volume V and is negative for a net flux into the volume V.

Now we consider the right-hand side of the continuity equation. The volume
integral of the net production rate per unit volume, S, gives the total net production
rate inside the volume:

S, = / S d’x. (2.42)
14
The integral form of the continuity equation becomes
aN, =
S5, / T - dS. (2.43)
at s

Equation (2.43) states that the time rate of change of the total number of particles
(of type s) in the volume is equal to the change due to the flux of particles across the
surface plus the total net production of particles within the volume (S;). If the fluid
is stationary and ug = 0, then N, changes only if there is a net collisional creation
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22 Introduction to kinetic theory

or destruction of particles of species s locally within the volume. For example,
in a partially ionized plasma such as that found in the terrestrial ionosphere, ions
and electrons can be created by the photoionization of neutrals by solar extreme
ultraviolet radiation (i.e., collisions with photons). And ions of one species (e.g.,
O™) can be converted to ions of another species (e.g., NO1) by chemical reactions
(e.g., ion—neutral collisions) such as

Ot +N; — NOT +N. (2.44)

Electrons in the ionosphere can be removed by recombination with ions. All these
“collisional/chemical” production and loss terms enter the continuity equation via
the net production terms S;. The net production rate can be expressed as the differ-
ence between the production rate, P, and the loss rate, L;; that is, S; = Py — L.

The density is constant in time and space (i.e., n; = constant) for the important
special case of an incompressible fluid. Furthermore, if there is no production or
loss of particles (S; = 0), the continuity equation simply becomes

V.u, =0. (2.45)

This simple incompressible continuity equation is generally applicable to air in
the lower atmosphere or to liquids, but most plasmas are compressible and the full
continuity equation (2.40) must be used.

2.4.2 Momentum equation

Now let us determine the first moment of the Boltzmann equation and obtain an
equation for the flow speed u,. This is the momentum equation, which is a vector
equation with three components. The jth component of the momentum equation is
given by

/ v;j{Boltzmann equation} d 3y, (2.46)

where j runs from 1 to 3 (for the x, y, and z components, respectively).
The first moment of the time-derivative term in Equation (2.33) (or Equation
(2.46)) is

a a a
= [wldv=o [vhdv = mus), (247)

where the order of the time derivative and the integral over velocity were switched.
The definition of the flow velocity, Equation (2.24), was employed for the last step.
The vector version of (2.47) is given by

0
a(nsus). (2.48)
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2.4 The fluid conservation equations 23

The jth component of the second term (the advection term) is

b
. /vjv std3v—/vjvk8id3v_ . /v,kasd v, (2.49)

where the removal of the derivative to outside the integral in the last step in Equa-
tion (2.49) was made possible because x;, vy, and v; are all independent variables.

Next, we use the definition of peculiar velocity given in Equation (2.26) to write
the jth component of the velocity as v; = c;+u ;. Putting this into Equation (2.49),
we find that

= i/vjkasd?'v
axy

= %{/cjckfs d3v+/(c,~uk+ckuj)fsd3v+/ujukfsd3v}.
k
6y (i1) (iii)
(2.50)

The first integral, (i), can be evaluated by using the definition of the pressure tensor,
as given by Equation (2.28):

(i) = / ¢jcefs d*V = nslcice) = (1/mg) Py i, @.51)

where P ;i is the j, k component of the pressure tensor for species s. Integral
(i1) is zero because uy (or u;) is independent of v, and the average of ¢; or ¢ is
zero, due to the definition of peculiar velocity. The product u ju; can be removed
outside the integral (iii), in which case we find

(iii) = /ujukfs d’v = ujuk/fs d*v = ngujuy. (2.52)

When we put all the parts of Equation (2.50) back together, we find

[2]= g( Py jk +ngu; uk) (2.53)

Expression (2.53) can be rearranged in several ways, including

1 9P ik au i

2] = — 2255 1, 2 gy + mn o (2.54)
mg axy dxy

Let us convert Equation (2.54) to vector form. The first two derivatives in this

equation turn into divergence operators and the last derivative becomes the gradient

operator:

1_
= —V.P,+u,V- (n,u,) + n,(uy - V)u,. (2.55)
mg
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24 Introduction to kinetic theory

We now evaluate the first velocity moment of the third term on the left-hand
side of the Boltzmann equation — the acceleration term. The jth component of this
moment is

= /Ujak%d?)v

_../v]ax s py +/v,ay d3v+/ ,aZ SAINCED

where the summation over k was carried out explicitly. Two of the three integrals in
expression (2.56) have indices j # k, and these two integrals are zero (see Problem
2.5). The x component (j = 1) of the other integral can be integrated by parts over
v, and is equal to

)
/ vxax£d3v = —nyla,), (2.57)
dvy

where (a,) is the average of the x component of the acceleration of a particle of
species s. The y and z components can similarly be determined. Equation (2.56)
can now be written

= —n,(a;). (2.58)

We have finished taking the first moment of the left-hand side of the Boltzmann
equation. We should now evaluate the velocity moment of the right-hand side of
the Boltzmann equation (i.e., the collision term). This represents the change in
momentum per unit volume of the fluid species s due to collisions. However, we
skip over this very difficult task and simply designate the jth component of the
collisional change in momentum as § M, ;/8t. A simple heuristic expression for
this collision term will be given later.

The velocity moment equation (i.e., the momentum equation) can now be written
in vector form by combining [ 1|+[2|+ :

SM; )
8t/ Coltision

where the mass density is related to the number density by p; = nym;. The
average acceleration of a plasma fluid parcel is related to the average force by
(as) = (Fs)/my. This average force should include the Lorentz force associated
with internal electric and magnetic fields and should include any external forces on
the fluid:

0 -
() + V- (o) + V- By — pyfay) = ( 2.59)

(a5) = m_[E(X 1) +us X B(X, 1)] + acxternal- (2.60)

N

The electric and magnetic fields are understood to be average, or “macroscopic,’
fields that can be found from Maxwell’s equations using macroscopically defined
sources (see Section 2.3); all microscopic fields are incorporated into the collision
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2.4 The fluid conservation equations 25

term. An example of an external acceleration is gravity, a.xx = g. The acceleration
due to gravity near the surface of the Earth is g = —9.88 Zm/s.

The momentum equation can be written in several forms, including the following
form, which can be derived using the continuity equation plus Equation (2.59)
(Problem 2.6):

Ju - M
ps[ats +us'vus} +V'Ps=ps(as)+< St

Recall that S; is the net source of particles of species s that appears on the right-hand
side of the continuity equation (2.40). The last term in equation (2.61) represents
the effect of adding mass to the fluid (this is the “mass-loading” term). The term in
brackets is the convective derivative of the flow velocity, which is just the accelera-
tion of a parcel of fluid, Du,/ Dt. Rearranging Equation (2.61) so that only Du, /Dt
appears on the left-hand side, the right-hand side then specifies this acceleration.

) —msuS;.  (2.61)
Collision

2.4.3 The pressure gradient force

The fluid acceleration not only includes (as) and collisional effects but also a
contribution due to any nonuniform pressure distribution in the fluid — this is, the
pressure gradient force. The pressure gradient force per unit mass on a fluid parcel
is —(1/ps)V - P,. For isotropic pressure, this becomes —(1/p;)V ps, where p; is
the scalar pressure. The physical meaning of the pressure gradient force can be
illustrated by considering the pressure force on a finite volume of fluid (Figure 2.5).
We find the change in the momentum in the volume by taking the volume integral
of the divergence of the pressure tensor. This volume integral can be transformed
by means of the divergence theorem (or Gauss’s theorem) into a surface integral
over the surface of the volume:

(D(momentum in V)) _ —/V Pdix = _/ P, - dS. (2.62)
Pressure v s

Dt
z
A
P, (x,) P, (x,)
T 1 \
¥ X, Xy A
> x

Figure 2.5. A cube-shaped volume (i.e., fluid parcel) is shown, each surface of which has
area A. A pressure gradient across this volume in the x direction results in a force on the
parcel.

Downloaded from Cambridge Books Online by IP 128.103.149.52 on Mon Sep 29 20:43:04 BST 2014.
hitp://dx.doi.org/10.1017/CB09780511529467.005
Cambridge Books Online © Cambridge University Press, 2014




26 Introduction to kinetic theory

Equation (2.62) represents the force on the fluid parcel due to the pressure gradient
force. Consider a simple scalar pressure that is only a function of x: p; = p;(x).
The only nonzero elements of the pressure tensor are the diagonal terms, which
are all equal to p;. The force on the fluid volume is then solely in the x direction
and is equal to —[ps(x2) — ps(x1)]A, where x; and x; define the x extent of the
volume and A is the surface area. Simply put, a net force on a volume results when
the pressure is greater on one side of the volume than on the other side. Pressure
is due to the random motion of the particles; hence, the pressure gradient force is
associated with an excess of collisions on one surface of a volume in comparison
with the collisions on the opposite surface.

2.4.4 The collision term

The first moment of the Boltzmann collision term can formally be expressed as

SM; 8fs
( ) - / vd%(i) 2.63)
8t/ collision 8t / coltision

In general, (8 f5/58¢)coltision includes contributions from creation and loss of particles
of type s, Coulomb collisions with other charged particles (including species s),
and collisions with neutral atoms and molecules.

The term (8 f; /8t)coltision has the form of a Fokker—Planck equation for the case
of a fully ionized plasma, because for the long-range Coulomb force, significant
changes in f; can result from a very large number of small-angle “collisions” (see
references at the end of this chapter including Spitzer, 1962, and Bittencourt, 1986).
However, “collisions” still implies “discrete” interactions of individual particles
even if these interactions are long range. For most fully ionized space plasmas,
such as the solar wind plasma and plasma in the solar corona, the collision term
in the momentum equation can be entirely neglected with little loss of accuracy.
However, both Coulomb and ion-neutral collisions are important for the colder and
denser plasmas found in planetary ionospheres.

The change in momentum due to collisions can be written (without derivation) as

SM; _ 5
= — Z Vgr ps(Ug — W) + psnsVoug + Pimyw, — Lymgug.
8t/ collision par

(2.64)

The first term on the right-hand side of Equation (2.64) represents the change in
fluid momentum due to collisions of species s with all other species (hence, the
summation over index ¢) including charged particle species and neutral species;
this is the friction term. The second term is the viscosity term (only an approximate
version has been included here), which can usually be neglected for space plasmas;
this term handles the change in momentum due to velocity shears in the presence of
collisions. The third term accounts for the creation of fluid momentum of species
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2.4 The fluid conservation equations 27

s via ionization of a neutral species n, which has flow velocity u, and mass m,,.
The last term in Equation (2.64) accounts for the loss of momentum associated
with the chemical loss of species s. Note that the last two terms of Equation (2.64),
when combined with the last term of the momentum equation (2.61), yield the fol-
lowing “mass-addition” or “mass-loading” term appropriate for Equation (2.61):
(mnun - msus)Ps-

A cross section represents the probability of some type of collisional process
taking place. For example, suppose that a broad “beam” of projectiles (e.g., pellets
fired from a gun) are fired at a target (e.g., a basketball). Then the probability that
a pellet will hit the basketball is proportional to the cross-sectional area (or cross
section) of the basketball, as well as being proportional to the flux of projectiles.
The collision frequency for some process is the rate at which this process takes
place (with units of s~!) and is proportional to the product of the cross section, the
relative speed of the projectile and target, and the number density of the targets.
For Equation (2.64), the relevant process is the transfer of momentum between
colliding species. For the continuity equation, (2.40), the relevant process is that of
creation or destruction of species s.

The term vy, is the momentum transfer collision frequency between species s and
species ¢t and has units of inverse seconds. It is thus apparent that Equation (2.64)
must have units of [N/m?]. The momentum transfer collision frequency can be
found by means of a suitable averaging of the momentum transfer cross section
over the distribution functions of the two colliding species:

Vor = ' (gOm(8))em. (2.65)
my -+ mg

Here n; is the number density of the target species; m; and m, are the masses of the
“projectile” and “target” species, respectively; g = |v — V/| is the relative velocity
between particles of type s and t; and oy, is the momentum transfer cross section
as a function of g. (). is an average in the center of mass reference frame:

gon@en = = [ @ [ Vv =Viem@LWAW). 266

The cross section depends on the nature of the interaction between the two
species of particles. And the distribution functions in Equation (2.66) are generally
assumed to be Maxwellians. For electron—neutral collisions, one can write the
collision frequency as v,, = ke,n,, Where n, is the neutral density and where
the collision coefficient k., depends on the particular neutral species and on the
electron energy. Typically, k., ~ 1078 cm? s~! for electrons with energies of a few
electron volts or less. Similarly, for ion—neutral collisions, the collision frequency
can be written as v;, = kip,n, with ki, =~ 1072 cm?s™! for most neutral species
and for ion energies of the order of several eV or less. Charge transfer is one of
the most important types of ion—neutral interactions for space plasmas and can be
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28 Introduction to kinetic theory
represented by the reaction
AT +B — A+Bt, (2.67)

where A and B represent different atomic or molecular species. For example, A
might be atomic hydrogen (H) and B might be atomic oxygen (O), in which case
reaction (2.67) is just the accidentally resonant charge transfer reaction, Ht + O —
O™ + H. For this process, ion A" is neutralized and replaced by ion BY. However,
the momentum is largely retained by the neutral particle A. If the neutral particle B
is slow, then the final ion B¥ is also slow regardless of the speed of the ion A*. If
the species A and B are the same, then the net result of the reaction (2.67) is a large
loss of momentum for ion species A™. Charge transfer cross sections are typically
about 10~15 cm? for most species. For a more detailed discussion of collisional
processes and their consequences you can consult a couple of the references cited
at the end of the chapter (Banks and Kockarts, 1973; Rees, 1989).

Now we very briefly consider the collision frequency for interactions between
two different charged species; again, for a detailed treatment of this topic consult
one of the references listed at the end of the chapter. The momentum transfer cross
section for Coulomb collisions varies as the inverse power of g*, and the collision
frequency is (in SI units)

e*n,In A

Vg = —5 7
Amegims s (85,)

(2.68)

where g, = mgm,/(ms + m;) is the reduced mass for species s and 7, and In A
is the Coulomb logarithm, which has a value of roughly In A = 20 for space
plasmas. Note that vy, is proportional to the average of the product of the speed
g and a cross section that varies as g~*. Hence, as the particle speed increases,
the Coulomb collision frequency decreases. The average () was defined above and
can be evaluated for a Maxwellian gas, in which case Equation (2.68) gives the
following collision frequency formula as a function of temperature:

4

nee” In A /inse .
Vg = [ST units]. 2.69
T 27 3262m (kg Ty) /2 (269

Using Equation (2.69), the following useful expressions for electron—electron (v,.),
electron—ion (v,;), and ion—ion (v;;) momentum transfer collision frequencies can
be obtained (Banks and Kockarts, 1973):

Vee = S4n,/ T
Vei = Vee
Vie = (me/mi)vei

vii = (Me/mi)/ve,.

(2.70)
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2.4 The fluid conservation equations 29

The units of density in expression (2.70) are cm~>. The electron—ion and electron—
electron collision frequency formulae are essentially the same (very small differ-
ences have been neglected), but the ion—electron and ion—ion collision frequencies
are much smaller than the electron—electron or electron—ion collision frequencies.

2.4.5 Energy equation

The continuity and momentum equations can be used to determine the density o
and flow speed u; for species s, respectively. The momentum equation, (2.61),
contains the pressure pg, which cannot be simply expressed in terms of density
or flow speed from what we have done up to now. Another equation — the energy
equation — is required to describe how the pressure (or thermal energy density) of
a fluid should behave. Pressure has units of force per unit area [N/m?2], but the
units [N/m?] are the same as the units of energy density [J/m?]. In fact, pressure is
essentially thermal energy density.

The energy equation for species s is obtained by taking the second moment of
the Boltzmann equation. The energy equation takes many forms, several of which
will be shown in this section. We will not derive the energy equation; the method is
essentially the same as was used to derive the continuity and momentum equations.
To give an idea of how this might work, the second moment of the first term of the
Boltzmann equation yields

af,\ 1 P 9
o, 8N = = TS ). 271
<v vi at> mg ot +at(nsu'u’) 271

Note that both the pressure tensor and bulk flow velocity appear in this expression.

For an isotropic Maxwellian distribution, the pressure of species s can be related
to the density and temperature of species s by means of the equation of state for an
ideal gas:

ps = nskpTs, (2.72)

where T is the temperature of species s, which appears in the Boltzmann factor
discussed earlier. For a non-Maxwellian gas, expression (2.72) can be used to define
an “effective” temperature using the pressure and the density of the gas. Equation
(2.72) can also be written as p; = ps; R Ty, where R is the gas constant for species
s and p; = mgn; is the mass density of species s.

The conservative form of the energy equation has the appearance of a continuity
equation for the total energy density of the fluid [J/m*]. The total energy density
includes: (1) internal energy density (o;U;), where Uy is specific internal energy
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30 Introduction to kinetic theory

(units of J/kg), (2) bulk kinetic energy density (psu§ /2), and (3) potential/field
energy density (osUpo). The energy equation is

d 1,
E Ps <Us+ Eus +Up0t

1 oFE
+V'[psus(hs+—u§+Upot>]+V‘Qs=( S) .
2 ot collision

(2.73)

The first term is the rate of change of the total energy density of species s. The second
term takes into account the change of this energy density due to bulk transport of
energy in or out of a volume; it also includes, by means of the specific enthalpy
hs, the energy gain or loss due to mechanical work associated with changes in the
volume. The V - Q; term is the heat conduction term that accounts for changes in the
energy density associated with microscopic heat transport in or out of a volume.
The right-hand side handles the local time rate of change of the energy density
associated with collisional processes.

We can write the specific enthalpy, or enthalpy per unit mass, 4, and the specific
internal energy Uy as

hs=U5+ps/ps= Ye & Us=£&= : &,

¥s — L ps 2p5  ys—1ps

where f; is the number of degrees of freedom of the gas species s. f; = 3 for
an ideal gas whose particles have no internal structure. f; = 5 for ordinary air
at room temperature (3 for translational degrees of freedom plus 2 for rotation).
The ratio of specific heats for species s is equal to y; = (f; + 2)/f;. For an ideal
monatomic gas y; = 5/3. y; = 7/5 forair and y; = 1 for a gas with only one degree
of translational energy. The internal energy per particle is equal to the number of
degrees of freedom multiplied by kg7, /2. The enthalpy is equal to the internal
energy plus an extra term that accounts for mechanical energy gained or lost due
to changes in the volume of a fluid parcel.

The potential energy term is often just the gravitational potential: Upor = Ugravity-
However, an energy relation for the plasma as a whole can be found by adding the
energy equation (2.73) for each of the plasma species (i.e., the index s must include
the electrons and all ion species) plus a relation for the electromagnetic energy.
In this case, the potential energy term must also include the magnetic energy den-
sity, B2 /210, and the electric field energy density g9 E2/2. Other “electromagnetic
terms” also appear throughout the combined plasma energy equation. These terms
are explained in Section 7 of the Appendix, and the combined plasma energy equa-
tion in its conservative form will be given in Chapter 4.

(8 E;/5t)con is the local change in energy density per unit time due to collisional
processes, and it essentially represents the heating or cooling of species s due to
collisions with other (colder or warmer) species. For instance, an ion gas can be

(2.74)
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2.4 The fluid conservation equations 31

heated by Coulomb collisions with hotter electrons, or the ion gas can be cooled by
collisions with colder neutrals. Sometimes, for electrons, cooling due to inelastic
collisions with neutral species must also be included. Banks and Kockarts (1973)
have an extensive discussion of various heating and cooling terms. A relatively
simple collisional energy term including only elastic collisions between species s
and neutrals (subscript n) can be written as

6E M
( S) = Uy - ( S) + Msnvsnns[(3kB/ms)(Tn —T) + |us — un|2]
3t/ cont 8t/ con

1 3
— <§msuf - EkBTS)Ss, (2.75)

where (5, is the reduced mass between species s and the neutral species, T, is
the temperature of the neutrals, u, is the neutral flow velocity, and vy, is the colli-
sion frequency for species s and neutrals. Note that the momentum change due to
collisions appears in this expression as does the net production rate of species s(S;).

The vector Qs is the heat flux of species s and represents the transport of heat
from one location to another by “microscopic” processes (rather than by bulk flow,
which was taken care of by other terms on the left-hand side of Equation (2.73)).
Although the heat flux vector is quite complicated in general, if the collision fre-
quency is sufficiently large and if the temperature gradient is small enough, the heat
conduction expression can be simply approximated by

Q, = —K,VT,. 2.76)

Equation (2.76) states that heat flows in response to temperature gradients — heat
flows from hot regions to cold regions. K is the conductivity coefficient, which is
proportional to the collision mean free path An5. The conductivity coefficient can
be written, to within a factor of order unity, as K; ~ (n3kpvs th)Amfp, Where vy
is the thermal speed. The conductivity for Coulomb collisions in a fully ionized
Maxwellian plasma (i.e., the Spitzer conductivity — see Banks and Kockarts again
and Spitzer, 1962) is given by

K, =CT’? [eVIm/s/K] .77

with C & 7.7 x 107 for most space plasmas.

Two other very useful forms of the energy equation can be derived from the
energy conservation form by using the continuity and momentum equations (see
Problems 2.10 and 2.11). One form of the energy equation is written in terms of
the convective derivative of the pressure (i.e., thermal energy density) of species s:

D/ 1 1 "
- V- u P,-V) - u, +V-Q,
Dt(ysulps>+ys_1ps U+ P -V)-u, +V-Q

SE, 3Ms> 1,
_ _ .- —mulS,. 2.78
( ot )coll U ( ot coll * 2msus ( )
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32 Introduction to kinetic theory

If species s were an ideal monatomic gas then the polytropic index would be
¥s = 5/3. The second and third terms account for the thermal energy changes
due to compression or expansion of a fluid volume. For isotropic pressure, the
third term is equal to (p;V - uy) and the second and third terms together become
[vs/(vs — DIpsV - us = hsV - ug. Yet another form of the energy equation can be
written in terms of the convective derivative of the temperature:

3 DT,

EnskBTts +psV-u, +V-Qq

SE, M, 1, 3 )
= —u - = — —kgT; }Ss. (2.79
( ot )Coll " ( 8t )coll + (2msu5 2 Bls s ( )

Isotropic pressure has been assumed here.
The above forms of the energy equation can often be simplified. Let us consider
four possible simplifications that are often useful in space physics applications.

2.4.5.1 Steady flow without heat sources or sinks: Bernoulli’s equation

In addition to assuming that the flow is steady (3/d¢ = 0) and that there are no
collisional sources or sinks of heat, let us assume that heat conduction is unimportant
and that we can neglect the potential energy. The following expression, which is
one form of Bernoulli’s equation, can then be derived from Equations (2.73) and
(2.74) plus the continuity equation for steady (3/9¢ = 0) flow without sources or
sinks (see Problem 2.12):

2
—ngf + %s = constant. (2.80)
Vs — 1 05

Equation (2.80) states that h; + u? /2 is constant along a streamline. For an ideal
monatomic gas, Equation (2.80) states that (5/2)kg7s + u? /2 is a constant. For
example, as a parcel of fluid moves from a region of fast flow to a region of slower
flow, it heats up; kinetic energy of the bulk flow is converted into thermal kinetic
energy. The volume of a fluid parcel decreases as it slows down, and from elementary
thermodynamics we know that a gas that is adiabatically compressed (i.e., no heat
transfer occurs into or out of the volume although mechanical work can be done on
the gas) has its internal energy increased.

2.4.5.2 Polytropic energy relation

An even simpler energy relation can be found when the conductive heat transport
and the collisional terms are unimportant:

p/p¥ = constant. (2.81)

Relation (2.81) even applies to time-dependent situations but does not apply across
discontinuities in the flow. This equation is applicable when specific entropy (i.e.,
entropy per unit mass) is conserved by the flow. This is called isentropic flow.
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2.4 The fluid conservation equations 33

y = 1 is appropriate for an isothermal gas and y = 5/3 for an ideal monatomic
gas (see Problem 2.13). y = 2 is appropriate for a strongly magnetized plasma and
for plasma motions perpendicular to the magnetic field.

2.4.5.3 Heat conduction equation

When the thermal speed is much greater than the fluid speed (v s > us), the “dy-
namical” terms and mass-loading terms can be neglected. The dominant processes
are then heat conduction and local collisional heating and cooling. The energy
equation (2.79) can then be reduced to the heat conduction equation for species s:

~nskp =-=V. Qs + Hy — L(T). (2.82)

The conductive heat flux was given by Equation (2.76). The collisional terms in
Equation (2.79) have been reorganized into local heating and cooling rate terms, H;
and L(T), respectively. The heating and cooling terms can be neglected for some
situations, in which case the one-dimensional heat conduction equation simply

becomes
T 2 9 aT,
5 _ — (K, — ), 2.83

ot 3nskp az( * 3z ) 289

where z is the relevant spatial coordinate (e.g., distance along the magnetic field
line). In Problem 2.14, Equation (2.83) is solved for an ionospheric electron gas.

2.4.5.4 Local collisional energy balance

At low altitudes in a planetary ionosphere where the neutral density (and thus the
electron—neutral and ion—neutral collision frequencies) is high, local collisional
energy transfer becomes more important in the energy balance relation than either
convective or conductive heat transport. In this case, the simple energy equation
(2.82) can be approximated by the following local heat balance equation:

H, = L(T,). (2.84)

Equation (2.84) can sometimes be solved to give an analytic expression for 7.
Banks and Kockarts (1972) discussed the heating and cooling terms (H; and L)
appropriate for the ionosphere of Earth. The electron—neutral cooling rate can usu-
ally be expressed in the form L, o, (7T) = bennan (T, — T,), where the parameter
b, is roughly independent of altitude z, although it does depend ob the electron tem-
perature T, and on the neutral composition. For the terrestrial ionosphere between
an altitude of about 120 km and 200 km, taking into account the neutral composi-
tion of this atmospheric region (N,, O,, and O), one finds that b,, ~ 5 x 10713
[eV cm?®/(Ks)] if the electron and neutral densities (n, and n,, respectively) are
given in units of cm™>. Expressing the electron heating rate (due to collisions
with suprathermal electrons — photoelectrons or auroral precipitating electrons) as
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34 Introduction to kinetic theory

H.(2) = a..(z)n., we can see that the electron temperature as a function of altitude
is given, in this approximation, by

T, =T, + aee(2)/ (bennn). (2.85)

For the terrestrial daytime ionosphere, the function a..(z) has a maximum value
of about 0.05 eV/s at an altitude of about 160km. Clearly, according to equa-
tion (2.85), the electron temperature is simply equal to the neutral temperature
(T, = T,) at the lowest altitudes (z < 130 km) where the neutral density n,, is very
large. However, at higher altitudes the electron temperature increases with altitude
since n,, decreases with increasing altitude. Electron temperatures measured in the
terrestrial ionosphere for altitudes above 200km or so typically exceed the neu-
tral temperature by several thousand degrees. However, at these higher altitudes
vertical heat conduction becomes an important part of the electron energetics and
Equation (2.85) is no longer valid.

2.5 Macroscopic sources for Maxwell’s equations

The Vlasov equation, and the moment/conservation equations derived from it, in-
clude the electric and magnetic fields, E(x, ) and B(x, t), respectively, via the
Lorentz force contribution to the average acceleration (a). These fields are macro-
scopically averaged fields and do not include the very small-scale, microscopic
fields associated with collisions. The fields can be found from Maxwell’s equations
(see the appendix) where the source terms are macroscopic (or average) quantities:

v.E= (2.86)
€0
V.B=0 (2.87)
9B
VxE=-2— (2.88)
ot
1 OE
VxB= - 2.89
X wod + 2 (2.89)

The macroscopic source terms — charge density p.(X, ) and the current density
J(x, t) — are expressed in terms of the densities and bulk flow velocities of all the
charged particle species in the plasma:

pe(X, 1) = geng(x, 1),  JX, 1) =Y gns(X, Dus(x, 7). (2.90)

The sum over s must include both electrons and ions.

The continuity and momentum equations provide prescriptions for finding n; and
uy, respectively, and these equations in turn require E and B, which are determined
by Maxwell’s equations using the source functions p. and J. In order to complete
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2.6 Debye shielding and the plasma parameter 35

the set of self-consistent fluid equations, p. and J are specified in terms of n; and
u; by means of Equation (2.90).

The fluid equations that we have presented in this chapter will be used in Chapter
4 to develop a fluid theory useful for describing space plasmas. In the next section,
we will use the material in this chapter to discuss a basic property of plasmas —
Debye shielding.

2.6 Debye shielding and the plasma parameter

Plasmas are different from neutral gases in that they are composed of charged
particles that can exert forces on each other through the electric and magnetic
fields they create. In space plasmas, the number densities of electrons and ions are
equal, on the average, and the plasma is said to be quasi-neutral. Slight departures
from charge neutrality (o, = e(n; — n,) = 0) can occur on large spatial scales for
nonequilibrium plasmas but not for most equilibrium plasmas. However, significant
departures from neutrality can exist on short spatial scales even for an equilibrium
plasma. What we mean by “short” spatial scale will become clear from the following
discussion of Debye shielding of atest charge in an equilibrium Maxwellian plasma.

2.6.1 Electrostatic potential of a test charge in a plasma

First let us consider the electric potential, V(r), of a point test charge, g, located
at the origin in a vacuum. r = |x| s the radial distance from the charge. Combin-
ing Gauss’s law — Equation (2.86) — and the electrostatic relation, E = —VV, we
obtain Poisson’s equation,

V2V = —p./e0. (2.91)

For a point charge in a vacuum, the charge density is p. = 0 forr > 0. The solution
of Equation (2.91) for a point charge in a vacuum is

V() = LA (2.92)

Now we suppose that at time ¢+ = 0, the test charge is immersed within an
initially uniform plasma in which the electron and ion densities are equal to each
other as well as to a reference density, n; = n, = ng. The initial charge density is
zero and the electric potential is still given by Equation (2.92). For positive values
of gr, the ions in the plasma are repelled by the test charge and the electrons are
attracted; for negative gr, the electrons are repelled and the ions attracted by the test
charge. After a sufficiently long time, the electrons and ions rearrange themselves in
response to the electrostatic forces on them, and the plasma eventually reaches a new
equilibrium configuration that takes into account the existence of the test charge.
The ions move much more slowly than the electrons, so that for an intermediate
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Figure 2.6. Shielding cloud surrounding a test charge.

time scale we assume that they remain motionless. The ion density then remains
uniform: n; = ng. However, the density of electrons near the test charge increases
so that n, > ng (for g7 > 0) or n, < ny (for gv < 0 ). The charge density is
no longer zero near the test charge because n; # n, (Figure 2.6), and Poisson’s
equation becomes

V2V = —e[n; — n./¢o. (2.93)

For a Maxwell-Boltzmann distribution of electrons in an electrostatic field, we
can use expression (2.20),

ne(r) = noexp(+eV(r)/kpTe). (2.94)

This expression tells us that, in thermal equilibrium, the electron density is greatest
at those locations where the electric potential V' is the most positive — that is, n,
is higher in the vicinity of the test charge (for positive values of gt). Here T, is
the electron temperature. The density variation is greater when the electron gas
is cold than when the gas is hot. Substituting expression (2.94) into the spherical
coordinate version of Equation (2.91), we find

1 _d_(rde) = T [1 - exp(ev(r)>], r>0, (2.95)

r_2 dr E'— €0 kB Te

where we used the assumption that the ion density was uniform. For longer time
scales, for which both the ions and electrons are in thermal equilibrium, another
exponential term with the ion temperature would appear in the brackets on the
right-hand side of (2.95) in place of the 1. Equation (2.95) is a complete equation
for the potential V' as function of r, subject to the condition that as r — 0, the
potential should look like that of a point charge, gT.

We can approximate Equation (2.95) by restricting ourselves to radial distances
that are large enough so that [eV| <« kgT,. This condition means that a typical
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2.6 Debye shielding and the plasma parameter 37

electron’s kinetic energy is much greater than its potential energy. We can now
expand the exponential function in Equation (2.95) using

2
ex=1+x+;—,+---, x L1, (2.96)

where x = eV (r)/ kg T,. Poisson’s equation then becomes

2
ii(rde> ~ [ nge ]V(,) = lev(r), (2.97)
D

r2 dr 2; SokB Te

The constants contained within the brackets have been collected to form the pa-
rameter Ap, which is called the Debye length or Debye shielding length. In SI

units
ks T,
Ap = | 2222 m, (2.98a)
noe
ks T,
p = /— [em]. (2.98b)
4mrnge

The solution of Equation (2.97) is given by Problem (2.15):

and in cgs units

Vi) = —— T exp (—i) (2.99)
dreg r AD
Clearly, as r — 0, the potential is essentially that of a point charge in a vacuum,
whereas for r 3> Ap, Equation (2.99) demonstrates that V(r) — 0 (as does the
electric field) much faster than it does for a point charge. The vacuum Coulomb
force is long range, but now in a plasma this force only extends a Debye length or
so from the source, as a consequence of the Debye shielding cloud. For a positive
test charge (g1 > 0) and positive potential, the shielding cloud contains an excess
of electrons, whereas for a negative potential, the cloud has a deficit of electrons.
It can easily be shown, using Gauss’s law, that the total net charge contained in the
shielding cloud, g, is equal and opposite to the test charge: g. = —gr. Another
way of interpreting the Debye shielding phenomenon is that, although on small
scales (L ~ Ap) a plasma in thermal equilibrium can have significant departures
from charge neutrality (n, # n;), for long spatial scales (L > Ap) an equilibrium
plasma must maintain charge neutrality. This property is called quasi-neutrality.
The size of the shielding cloud (Ap) increases as the electron temperature in-
creases because electrons with greater kinetic energy are better able to overcome
the Coulomb attraction associated with the potential. And Ap is smaller for a denser
plasma because more electrons are available to populate the shielding cloud. We
now consider the value of Ap for two typical space plasmas.
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38 Introduction to kinetic theory

Example 2.1 (Debye length in the ionosphere and in the solar wind) A numer-
ical expression for the Debye length [m] is given by Ap = 69[T,/n.]'/? with
electron temperature 7, in units of K and n, in units of m~3.

Typical temperature and density values in the topside terrestrial ionosphere are
T, ~ 1000K and n, ~ 10'! m~3, respectively, giving the following value for the
Debye length:

Ap = .007m (&1 cm).

This Debye length is much less than either the vertical (L 2~ 300 km) or horizontal
(L = 3,000 km) extent of the ionosphere: That is, Ap < L. Hence, the ionosphere
can be considered to be quasi-neutral.
_Typical parameters in the solar wind near 1 AU are 7, ~ 10°Kandn, ~ 10’ m=3,
giving
Ap = 7 m.

Seven meters is much less than the macroscopic spatial scale of the solar wind
(L ~ 1 AU =~ 108 km). Hence the solar wind can also be considered to be quasi-
neutral. However, note that Ap is greater than, or comparable to, the size of most
spacecraft that have traversed the interplanetary medium. This must be taken into
account when designing instruments to measure solar wind plasma properties.

2.6.2 The plasma parameter

Each particle in a plasma — be it an electron or an ion — can act as a “test charge”
and carry its own shielding cloud. The concept of Debye shielding as it has just
been developed requires the presence of a sufficiently large number of electrons
and ions so that “density” can be defined in a statistically meaningful way. A useful
parameter in this regard is the number of particles in a Debye sphere,

Np = no[d4nrd/3]. (2.100)

Np is approximately equal to the A parameter that appears in the Coulomb loga-
rithm. The plasma parameter is defined by

8plasma = 1/Np. (2.101)

A useful expression for Np in SI units is Np = 138 T73/2/n'/2. For example, in the
solar wind and in the ionosphere, we have

solar wind:  Np ~ 1010, 8plasma ~ 10-10
ionosphere: Np & 10°, &plasma ~ 103,
In both of these plasmas, the number of particles in a Debye sphere is extremely

large and the plasma parameter is very small, which indicates that Debye shielding
is a statistically valid concept.
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Another interpretation of the plasma parameter is that for gpjasma < 1, large-scale
plasma phenomena are much more important than short-range Coulomb collisions
(Nicholson, 1983). This is equivalent to the statement that for an equilibrium plasma
for which gplasma < 1, the average kinetic energy of a plasma particle ((KE)) is
much larger than its average potential energy ({(PE)). One can show (see Problem
2.17) that

8plasma ~ (PE}/(KE). (2.102)

(PE) for an equilibrium plasma indicates the importance of the Coulomb collisions.

Three criteria are commonly used (see references listed at the end of this chapter)
for determining whether or not a charged particle gas is a “good” plasma. “Good”
is not meant to be an ethical judgment, but indicates that the plasma is quasi-
neutral on important length scales and that collective, collisionless, and long-range
phenomena such as plasma oscillations (discussed in Chapter 4) are more important
than short-range collisional phenomena. The three criteria are:

(1) App<K L (quasi-neutrality on length scales of interest),
(2) gplasma < 1 (Coulomb collisions are not important and Ap is defined),
3) wt, > 1 (other collisional processes are not important).

In criterion (3), (w = 27 f) denotes the angular frequency of the relevant plasma
process (such as a wave mode) and 7, is a collision time for electron or ion col-
lisions with neutrals. The last criterion states that collisions with neutrals do not
constitute an important process on time scales of interest. For example, for a plasma
to sustain a large-scale oscillation (or waves) with wave frequency w, then @ must
be much greater than the collision frequency for ion—neutral or electron-neutral
collisions (7, ' 2 v;, or v,p). This last criterion is not always met in an ionospheric
plasma or in the solar atmosphere, although it usually is met in the solar wind or
magnetosphere; in fact in the ionosphere, some of the most interesting phenomena
are associated with charged particle collisions with neutrals.

In this chapter a fluid theory has been introduced that can be used to describe the
statistical behavior of a collection of charged particles. This theory will be used in
Chapter 4 to derive a more refined set of equations (e.g., the magnetohydrodynamic
equations) that can be directly applied to space plasma problems. But first, in
Chapter 3, we will study the behavior of individual (or single) particles in specified
electric and magnetic fields. The study of single particle motion is often useful for
understanding very low density plasmas, but it can also be useful for obtaining a
physical understanding of the effects of fields on charged particles in fluids.

Problems

2.1 Find the number density associated with the “beam” distribution function
given by Equation (2.13).
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22

23

24

2.5

2.6

2.7

Introduction to kinetic theory

Demonstrate by substitution that the Maxwellian distribution, given by
Equation (2.15), is a solution of the collisionless Boltzmann equation
2.11).
The equation of state for an ideal gas relates pressure to density and tem-
perature: ps = nskpTy.

Show that for a Maxwellian gas the average kinetic energy of a particle
is given by

(KE) = (3/2)ksT;

and that 7 is indeed the temperature appearing in the Boltzmann factor.
Then show that for a Maxwellian distribution, Equation (2.31) yields the
equation of state.

Find the scalar pressure p; associated with the shell distribution function
given by Equation (2.14).

In the derivation of the momentum equation from the Boltzmann equation
several mathematical manipulations were undertaken. Derive the following
expressions:

(@ [via, 35 d>v=0 fori=y,z,
where the acceleration a includes the Lorentz force.

(b) fvxax%%d% = —n,(a,).

Start with the following “conservative” form of the momentum equation
for species s:

P} SM;
—(psus) + V- [psusug] + Vpg = pg(ag) +
ot ot collisions

Use the continuity equation for species s to transform this form of the
momentum equation into the following form:

ou M
,Os[ . +us’vusJ +Vps=ps<as)_ms“sss+< S) s
ot 3t collisions
where m; is the mass of a species s particle and where S; is the net pro-
duction rate of species s.
Note that in component notation

d
{V - [Ps“s“s]}i =V. [(psus,i)us] = g(psus,ius,j)-
J

Show that the units of the following collision term in the momentum equa-
tion are [Nm™3]:

oM
( s) = —p5 Y vsr(Ul; — ;).
ot collisions ts
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2.10

2.11

2.12

2.13
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Also show that the units of the collision frequency v, must be [s™'], starting
from an expression for this collision frequency that includes the momentum
transfer cross section.

For a slow-moving, uniform, charged particle gas (i.e., species s) with
zero electric and magnetic field, moving through a stationary background
neutral gas, the momentum equation simply becomes

dug /0t = —vg,u;.

Find the flow velocity as a function of time given an initial flow velocity
of u,o(r = 0).

Derive the Spitzer (i.e., Coulomb) heat conduction expression as given by
Equation (2.77) (to within a factor of order unity) by using an expression
for the Coulomb collision mean free path,

)‘-mfp = Uth/v,

where vy, is the thermal speed and v is the Coulomb collision frequency.
Derive the form of the energy equation given by Equation (2.78) from
the “conservative” form of the energy equation (Equation (2.73)). Use the
continuity and momentum equations. Assume that the electric and magnetic
fields are zero. :
Derive the form of the energy equation (2.79) from the form given by
Equation (2.78), assuming an isotropic pressure.

Derive the simple energy relation, Equation (2.80), from the “conserva-
tive” form of the energy equation (Equation (2.73)) using Equation (2.74).
Carefully consider the assumptions needed for this simple equation that
were discussed in the text.

Derive the polytropic energy relation (2.81) for an ideal gas, starting from
the energy equation (2.78) by neglecting the collision terms and heat con-
duction.

Hint: You will also need the continuity equation without sources or sinks.
The electron temperature as a function of altitude z in a planetary ionosphere
can frequently be described using a one-dimensional, steady-state, heat
conduction equation without local heating and cooling:

K.(3T,/3z) = Qc0,

where Q. is the downward electron heat flux at the top of the ionosphere
(z = z40p)- The constant Q. can often be equated to the integrated heating
rate at higher altitudes associated with such processes as magnetospheric
heating. The neutral density, and therefore electron—neutral collisional
cooling rate, decreases sharply with increasing altitude in an ionosphere;
hence the assumption of no heating and cooling is not unreasonable. The
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2.15

2.16

2.17

Introduction to kinetic theory

lower boundary can be placed at an altitude zpoom Where cooling first be-
gins to be important. At this lower boundary, assume that the temperature
is specified: T,(z = Zpottom) = Teo. It is usually appropriate to use the
Coulomb heat conductivity coefficient.

(a) Derive the steady-state heat conduction equation given in this problem from
Equation (2.83).

(b) Show that the solution, 7,(z), of the steady-state heat conduction equation is
given by

Te7/2 _ 870/2 + (7/2)(Qe0/C)(Z — Zbottom)

where C is the constant in Equation (2.77).

(c) Let T,y = 300 K at zpottom = 100km and let z;,, = 1000 km. Also let the heat
flux into the top of the ionosphere have a (typical) value of Qo = 10> eV/m?/s.
Plot the electron temperature as a function of altitude for these conditions. What
is T, at the top of the ionosphere?

Demonstrate by substitution that the electrostatic potential given by Equa-
tion (2.99) is the solution of the differential Equation (2.97).

The Debye shielding length was found in Chapter 2 with the assumption
that the ions were stationary. Repeat the analysis given in the chapter,
but for mobile ions (which are in thermal equilibrium like the electrons)
with temperature 7;, and find a new expression for the Debye length Ap.
How does this expression for Ap compare with the expression given by
Equation (2.98)?

Demonstrate that the plasma parameter is approximately (to within a factor
of order unity) given by the ratio of the average potential energy of an
electron in the plasma to the average kinetic energy:

8plasma ~ (PE)/{KE).

Assume that the relevant value of the test charge is g1 = e.
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