
ASTR-3760: Solar & Space Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spring 2015

Review material for midterm exam (March 18, 2015)

Although I’m not recommending full-on memorization of everything in this document, I do
think it’s important that you get to a point of familiarity with all of the ideas and equations.
Nothing in this document should be a surprise to you, is what I’m saying.

Math & Physics Overview

Various energy quantities associated with individual particles (mass m, charge q):

Kinetic energy E =
1

2
mv2 (v ≪ c)

Thermal energy (per particle) E =
3

2
kBT

Energy of a photon E = hν =
hc

λ

Gravitational potential energy E = −
Gm1m2

r

Electric-field potential energy E =
keq1q2

r
ke =

1

4πǫ0

Last two: energy felt by particle 1 in field of particle 2, when they are separated by distance r.

Vector calculus: Be able to apply (i.e., write out in full and manipulate) the various
identities and coordinate-specific versions of the vector derivatives (grad, div, curl) in the
useful-formula handout.

Electromagnetic Lorentz force on a particle embedded in electric field E and magnetic field
B:

F = ma = q (E+ v ×B)

The combined system of E&M fields and charged particles obeys all four Maxwell’s
equations, which relate E & B to:

• ρc (charge density): just what it says: how much electric charge is concentrated into a
given volume (Coulombs/m3).

• J (current density): how much charge is in motion in a given volume (units: ρcv... also:
Amps/m2). In a hydrogen plasma, J ≈ e(npvp − neve).

I won’t list Maxwell’s equations here. If you need them, I’ll give them in the exam.
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To bring this into the context of the Sun and the solar system, you should be familiar with the
overall “story” of the changing forms that energy takes on its journey from the Sun to
us:

1. Before the Sun was born, it was a giant interstellar gas cloud. It became unstable to
gravitational collapse, so the formation of the Sun was all about accumulating
gravitational potential energy.

2. As the new Sun settled into equilibrium, it also converted part of that gravitational
energy into thermal energy (i.e., its core became hotter and hotter).

3. When Tcore reached a threshold value, the motions of H nuclei became so rapid that they
slammed into one another and induced thermonuclear fusion. Nucleons arrange
themselves into more tightly-bound forms (via the strong-force potential energy).

4. Fusion reactions are exothermic, so they give off photons that carry radiant energy out
through much of the Sun’s interior.

5. Near the solar surface, though, the most efficient way of transporting energy is no longer
radiation. Convection cells form naturally and transport the energy upwards by a
combination of kinetic & thermal energy (i.e., bulk flow of hot parcels).

6. At the solar photosphere, radiant energy becomes the most efficient way of getting the
energy out. However, there is also still some residual kinetic energy in the convective
“granulation” motions, and magnetic energy in the field lines that thread the surface.

7. More than 99.99% of the Sun’s power (generated ultimately by fusion) comes out in the
form of radiation. Different parts of the spectrum eventually interact with different layers
of the Earth’s atmosphere:

• Visible/IR: Makes it down to the troposphere (cloud layer) and solid surface.
Photons absorbed by solid matter & re-emitted as ∼blackbody.

• Near UV: Absorbed in stratosphere (ozone layer); excites electrons & dissociates
molecules (endothermic reactions).

• Far UV/X-ray: Absorbed higher up: ionizes the ionosphere.

8. The outermost layers (chromosphere, corona, solar wind −→ planetary magnetospheres)
undergo additional transformations of energy, but we’ll be covering those in the last part
of the course... not on this exam.

(Note: this page is kind of OPTIONAL, in that it helps you maintain the “big picture” in your
mind, but it’s not going to correspond to any specific facts or figures on the exam.)
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Plasmas & Fluids

A plasma is an ionized gas... most generally composed of neutral atoms, positively-charged
ions, and free, negatively-charged electrons.

In nearly all cases that we care about, the plasma is quasi-neutral, i.e., the net charge density
ρc ≈ 0 everywhere. (Charge imbalances get quickly “shorted out” by Coulomb attraction.)

In nearly all cases that we care about, the microscopic velocity distribution function f(v) is a
drifting Maxwell-Boltzmann distribution. It’s parameters are:

number density n =

∫

d3v f(v) (in units of particles per unit volume)

bulk/fluid flow speed u = 〈v〉 =

∫

d3v f v
∫

d3v f
(in units of m/s)

gas pressure P , related to temperature T via the ideal gas law: P = nkBT

The distribution function f(v) obeys the Vlasov (or Boltzmann) equation, which is essentially
just “no particles are created or destroyed.”

If we multiply each term in the Vlasov equation by various factors of the microscopic/random
velocity v, and also integrate over all v, we get the fluid conservation equations:







0th moment: mass conservation
1st moment: momentum conservation
2nd moment: energy conservation







For a mixture of multiple elements (species “s”), we define

total number density ntot =
∑

s

ns mass density ρ =
∑

s

msns = ntot µmH

total gas pressure P =
∑

s

nskBTs ≈ ntotkBT =
ρkBT

µmH

where µ is the mean mass per particle in units of mH (neutral solar mixture: µ ≈ 1.26,
ionized mixture: µ ≈ 0.6).

Summing together the fluid conservation equations for each species gives the conservation
equations of magnetohydrodynamics (MHD):

mass conservation
∂ρ

∂t
+∇ · (ρu) = 0

momentum conservation ρ
∂u

∂t
+ u · ∇u+∇P − ρg − J×B = 0

and Ampere’s law (with the displacement current term assumed to be zero) can be used to
express J as proportional to ∇×B.
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In time-steady systems with no motion (u = 0), the momentum equation reduces to the special
case of hydrostatic equilibrium:

• When B = 0,
∇P = ρg

which reduces for an isothermal (T = constant) and thin/Cartesian atmosphere
(g = constant) to a simple function of height z,

∂P

∂z
= −ρg ❀ ❀ ❀ ρ(z) = ρ0 exp

(

−
z

H

)

where H =
kBT

µmHg
.

• When g is unimportant but there is a magnetic field,

∇P = J×B

and we showed that J×B can be broken up into two terms: a magnetic pressure and a
magnetic tension. Magnetic pressure works similarly to gas pressure, so that we often
group them together as

∇Ptot = ∇ (Pgas + Pmag) = ∇

(

P +
B2

2µ0

)

i.e., a bunched-up region of field lines wants to expand, just like a region of high Pgas.

The thermal energy equation contains lots of terms, but we often care about simpler cases:

• When there’s no external heating or cooling of a “parcel,” the gas evolves adiabatically:
P ∝ ργ , where γ = 5/3 for an ideal gas.

• When the system is in time-steady equilibrium, it’s only the “right-hand side” (sources &
sinks) that matters. The total heating rate H is balanced by the total cooling rate C. If
both rates depend on temperature T , then we can solve for the equilibrium value of T at
which H = C.

Lastly, the magnetic field evolves by obeying the magnetic induction equation, which
comes from Faraday’s law and Ohm’s law...

∂B

∂t
= ∇× (u×B) + DB ∇2B

where DB is the magnetic diffusion coefficient (due to friction-like resistivity of the plasma).

When DB = 0, the 1st term on the right-hand side tells us the field lines are “frozen-in” to the
flow... i.e., the magnetic field is carried along by the plasma velocity vector u.

When the 2nd term on the right-hand side dominates, it’s a diffusion equation, and the
magnetic energy is slowly dissipated away and turned into heat.
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The Solar Interior: Energy Generation

A star releases energy continually with luminosity (i.e., power) L∗. The energy flux (power
per unit area) at the surface is given by

F =
L∗

4πR2
∗

= σT 4
eff (σ = Stefan-Boltzmann constant)

where the effective temperature Teff is essentially defined by the above equation. It’s also the
actual temperature of the solar photosphere.

How is the Sun’s power generated?

Eddington determined that slow gravitational contraction could produce some net energy
release. However, we derived the “virial theorem” to show that, at the present-day value of L⊙,
the Sun would only live for ∼107 years before contracting all the way to nothing.

Thus, there must be some extra source of energy generation inside the Sun to have kept it alive
for > 4× 109 years.

Nuclear fusion is of course the answer.

A 4He nucleus has a lower mass energy (E = mc2) than the sum of four separate 1H nuclei.
The difference between these 2 quantities is the relative binding energy B of 4He.

The nucleus is sitting “deeper” in the potential well (i.e., larger B means it’s more stable).

If you want to break it apart, you’d need to add energy B to the system. On the other hand,
when 4 protons combine into one 4He, there’s extra energy B “left over” to be released in the
form of high-energy photons.

There are strong reactions, where two positively-charged nuclei ram into one another (if their
kinetic energies are large enough to fight against Coulomb repulsion), form a new, heavier
nucleus, and release photons. . . . . . . . . . . . . . . . . . Note: forming heavier nuclei requires higher T .

There are also weak reactions, where protons and neutrons can turn into one another (if the
nucleus has too many or too few of one type to be stable). One basic form is:

p+ −→ n0 + e+ + νe

where other particles need to be emitted to conserve charge and other basic laws; i.e., e+ is a
positron (anti-matter! it won’t last long before annihilating itself with a corresponding particle
of normal matter), and νe is a neutrino (massless, but measurable).

Strong reactions are much faster (i.e., they happen much more frequently) than weak reactions.

In the Sun, most of the 4He is formed by the PP-I chain, which has three steps:
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(1) A weak (slow) reaction in which a proton decays into a neutron (only when when near
another proton) and then they can fuse into deuterium:

p+ + p+ −→ D+ + e+ + νe

(2) Another proton is “captured” by a deuterium to make 3He in a strong (fast) reaction:

p+ + D+ −→ 3He + γ

(3) Then, if there are two 3He nuclei in close proximity, there’s another strong (fast) reaction:

3He + 3He −→ 4He + p+ + p+ + γ

The other two ways of creating 4He (PP-II and PP-III chains) depend on there already being
lots of 4He around, so they are important for stars with hotter interiors than the Sun.

The Solar Interior: Energy Transport

How does the energy (mostly generated in the dense core) get out?

Most types of energy flux look like: F ∝ −∇T

i.e., a “steeper” temperature gradient (larger |∂T/∂r|) allows the star to transport energy out
more rapidly & efficiently.

Thus, we specify how multiple processes contribute to the total value of ∂T/∂r:

• Radiative diffusion: photons bounce around randomly, but carry more energy out than
in. Energy is transferred to the plasma via absorption; i.e., nonzero “opacity.”

• Heat conduction: similar to above, but with particles bouncing around randomly.
Relatively unimportant in the Sun.

• Convection: the interior becomes unstable to the production of hot/rising blobs and
cool/falling blobs, which carry more energy out than in.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The radiation field is characterized by specific intensity Iν(µ), which depends on photon
energy (E = hν) and on photon direction (µ = cos θ, where θ = 0 points radially outward).

Iν measures the amount of photon energy that is emitted per unit time, per unit frequency, per
unit area (passing through), and per unit solid angle (expanding into).

If the interior was completely homogeneous (i.e., nothing changing as a function of r), the
radiation field would be an isotropic blackbody Planck function:

Iν = Bν(T ) =
2hν3/c2

ehν/kT − 1
(doesn’t depend on direction angle θ)
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Integrating over all ν, this gives B =

∫

∞

0

dν Bν(T ) =
σT 4

π

(but all you’ll probably need to remember is that B ∝ T 4).

However, in the real solar interior, Iν in the outward direction (θ ≈ 0) is slightly larger

than Iν in the inward direction (θ ≈ 180◦).

This slight imbalance shows up in the radial component of energy flux Fr, which we related to
the radial derivative of the total energy density U ∝ T 4, so that

(

dT

dr

)

rad

∝ κρ Fr

where κ is the absorption coefficient of the plasma (a function of ρ & T ).

A higher luminosity makes a stronger temperature gradient, because more flux = more
anisotropy in I(µ), and thus more of a radial change in U ∝ T 4.

Also, a large opacity makes a stronger temperature gradient, too... because large opacity =
“good insulation” that allows the core to retain its heat while being surrounded by the
coldness of space.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The other major transport mechanism is convection. There will always be small “blobs” that
are displaced from their initial radii.

But what happens to them once they are displaced? If the initial displacement was “up,” then
will they keep rising, or will they fall back down? If it keeps rising, it’s convective instability

(i.e., the blobs transport their energy over long distances).

We started with 3 assumptions:

1. The bubble starts with equal density ρ as the surroundings.

2. The bubble’s evolution is slow enough to keep it in pressure equilibrium with its
surroundings.

3. The slowness of the process also lets us assume the bubble’s evolution in ρ and T is
adiabatic – i.e., the bubble doesn’t gain or lose heat to its surroundings.

Putting those together, we estimated the bubble’s density at its “new” height. If it’s stable,
then it falls back down, and thus it must be denser than its surroundings (less buoyant).

We also used pressure equilibrium to rewrite everything in terms of the blob temperature: if
P = constant, then a denser blob will be cooler (and a less dense blob will be hotter). We
derived the Schwarzschild convective stability criterion,

∣

∣

∣

∣

∂T

∂r

∣

∣

∣

∣

≤ ∇ad

T

P

∣

∣

∣

∣

∂P

∂r

∣

∣

∣

∣

for stability.
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Note that shallow (flat) temperature gradients are stable, and steep temperature gradients
are the most unstable to convection.

For an ideal gas, γ =
5

3
∇ad =

γ − 1

γ
=

2

5
.

In the Sun’s deep interior (0 < r
∼
< 0.7R⊙), radiation is the main way of transporting the flux

generated by fusion. It’s convectively stable.

Above ∼0.7 R⊙, convective instability takes over (|∂T/∂r|rad “wants to” exceed the adiabatic
gradient... so the blobs form and keep it close to adiabatic.)

Just below the photosphere (r ≈ 0.99R⊙) convection stops (i.e., |∂T/∂r| gets shallow again),
but we can still see the tops of convective cells: solar granulation.

Helioseismology

The Sun isn’t completely hydrostatic and spherical. It oscillates with millions of
small-amplitude “pulsation modes.”

At any fixed location (r, θ, φ), one sees sinusoidal oscillations in ρ, P , T (oscillating around a
mean value), and u (oscillating around zero).

The oscillations have discrete frequencies because they’re in a bound “cavity.” (Think of
“nodes” of vibration in a string when held fixed at both ends.)

We can observe brightness variations & Doppler-shift variations (i.e., line-of-sight projected
velocity). The ones that we observe on the Sun are all p-modes, where the restoring force is
the pressure-gradient force. The oscillations behave like trapped acoustic waves, which
propagate at a phase speed given by the local sound speed,

ω

k
= cs =

√

γP

ρ
=

√

γkBT

µmH

where the quantities ρ, P , and T are the time-averaged background (“zero-order”) quantities,
not the fluctuating ones.

Recall that wavelength λ = 2π/k and the frequency f = ω/2π. Also, a wave mode with
n wavelengths from core to surface has λ ≈ R⊙/n. Thus,

f =
n

R⊙/cs
(if cs = const), but in general, f ∼

n
∫ R⊙

0
dr/cs(r)

and by measuring f of “neighboring” modes (n, n+ 1, n+ 2, etc.) it’s possible to solve for
what cs(r) must be in the solar interior.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The Solar Dynamo

If magnetic diffusion was the only effect governing how the Sun’s magnetic field evolves, B
would have decayed away to ∼zero. It needs the “flux-freezing” term to generate new field.
How is this done? In general, by stretching, twisting, and folding the field lines.

Although we still don’t have a complete understanding of the solar dynamo, we believe we
know the basic order of steps: the αΩ dynamo.

Start with a poloidal (e.g., dipole) field with only Br & Bθ at solar minimum.

(1) The Ω effect: the equator rotates faster than the poles (“differential rotation”), so the field
lines get wrapped around the equator.

The field ends up stretched into the toroidal (Bφ) direction.

Also, some small regions (convective blobs? buoyant knots of strong B?) rise up and carry bits
of toroidal field with it, forming east-to-west sunspot pairs.

In general, the differential rotation produces uφ > 0 east-to-west flows near the equator, and
the Coriolis effect deflects them toward the equator (in north, deflection is to the right; in
south, deflection is to the left). This reproduces “Joy’s law” (observed sunspots tilt toward the
equator, too).

(2) The α effect: There are two proposed general ideas:

• Babcock & Leighton realized sunspots decay, via magnetic diffusion. The near-equator
leading spots cancel with one another, but the trailing spots diffuse their B-field toward
the poles, slowly building up poloidal field there.

• Parker noticed that sunspots act as sites of converging flow. In that case, the Coriolis
force produces “cyclonic” twist (counterclockwise in north; clockwise in south). This
twists the rising fields in a sunspot pair, from toroidal back to poloidal (north-to-south)
direction. The sense of the “new” poloidal field is opposite to the previous poloidal field.

We see this in action, in the form of Hale’s polarity laws:

One min→max→min cycle is ∼11 years, but to get back to the same polarity, it takes double
that: ∼22 years. We still don’t know why it’s 11, and not 1 or 100.
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