
Partial Derivatives, Multiple Integrals, & Vector Calculus

This is essentially part two of our introduction to
vectors. We’ve learned how to add, subtract, and

multiply them, and to take derivatives of vectors, but
only with respect to scalars like time.

However, that doesn’t really explore the full variety of

derivatives and integrals that one can do... in 3D...

Topics: (1) Partial Derivatives (∂) and the Gradient (∇)

(2) Multiple Integrals
(3) Other Kinds of Vector Derivative (Div & Curl)

(4) Partial/Vector Differential Equations (a few examples)

Previously in calculus, taking derivatives and integrals assumed that the

functions depend on just one variable, typically called x,

However, we’ve seen in physics that we can have functions of two, three, or
four variables:

f(x, y) T (x, y, z) v(x, y, z, t) .

The more variables, the more difficult it tends to be to make plots & graphs
of these functions.

Thus, many of our examples now will just be two-variable functions, like
f(x, y). Everything generalizes to more dimensions.

Think of f as mountain-range “elevation,” and (x, y) as position along the
ground (north–south, east–west).
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We can now introduce PARTIAL DERIVATIVES.

Just like normal derivatives, they are still interpreted as slopes. But if it’s a
multidimensional function, there are multiple ways to “cut through the

mountain” to define the slopes:

Remember our old definition of the derivative with respect to one variable:

f(t) :
df

dt
= lim

ǫ→0

f(t+ ǫ)− f(t)

ǫ

can be modified for functions of multiple variables, as long as we vary only

one variable at a time:

f(x, y) :
∂f

∂x
= lim

ǫ→0

f(x+ ǫ, y)− f(x, y)

ǫ

and
∂f

∂y
= lim

ǫ→0

f(x, y + ǫ)− f(x, y)

ǫ
.

The rounded ∂ symbol is often just called partial, as in ∂f/∂x is spoken as
“partial of f with respect to x.”

The way we actual do the derivatives is just to assume the “other” variables

are all held constant.

Example:

f(x, y, z) = exy +
x

y

Determine ∂f/∂x and ∂f/∂y and ∂f/∂z.
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For ∂f/∂x, just pretend y & z are constants:

∂f

∂x
= yexy +

1

y
.

For ∂f/∂y, just pretend x & z are constants:

∂f

∂y
= xexy − x

y2
.

For ∂f/∂z, just pretend x & y are constants:

∂f

∂z
= 0 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We can define higher-order partial derivatives, and it’s interesting that the
“types” proliferate...

∂

∂x

(
∂f

∂x

)

=
∂2f

∂x2

∂

∂y

(
∂f

∂y

)

=
∂2f

∂y2

∂

∂x

(
∂f

∂y

)

=
∂2f

∂x ∂y

∂

∂y

(
∂f

∂x

)

=
∂2f

∂y ∂x
.

If you work through “well-behaved” examples, you’ll find that it’s nearly

always true that
∂2f

∂x ∂y
=

∂2f

∂y ∂x
.

We won’t see these “mixed second partials” very much, though.

There are also new versions of the chain rule. Recall the old version. If we

know a function f(x), but we also know x(t), then it’s possible to figure out
that

df

dt
=

df

dx

dx

dt
.

There are two new versions:

(a) Multi-then-One:

Start with a function of multiple variables, say, mountain height h(x, y). Then,
assume each of those variables depends on one variable (like time t). Think of

the ocean, where you can have waves flowing north–south, colliding with waves
flowing east–west.
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Thus, how does the height change with time, at a given location, when feeling
both kinds of “sloshing” simultaneously?

The answer is that we must sum over both variations:

i.e., for h(x(t), y(t)) =⇒ dh

dt
=

∂h

∂x

dx

dt
+

∂h

∂y

dy

dt

and note that ordinary derivatives (d/dt) are taken when there’s just one

variable (t), and partials are taken when there are two (x, y).

(b) Multi-then-Multi:

Here we’re dealing with some function of multiple variables f(x, y) and
each of the coordinates depends on some set of multiple other variables.

Let’s use the example of coordinate systems. Think of a 2D plane, which can
be described by either Cartesian or polar coordinates. You know the

conversions:
x = r cosφ

y = r sinφ
r =

√

x2 + y2

φ = tan−1(y/x)

and it’s clear you could describe “mountain height” by either f(x, y) or f(r, φ).

However, each coordinate depends on all of the others in the other set, too.
Thus, these functions can be written as

f(x(r, φ), y(r, φ)) or f(r(x, y), φ(x, y)) .

If you start by describing slopes in one coordinate system, you can convert to
the other by using the multi/multi chain rule:

∂f

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r
= cosφ

∂f

∂x
+ sinφ

∂f

∂y

∂f

∂φ
=

∂f

∂x

∂x

∂φ
+

∂f

∂y

∂y

∂φ
= −r sinφ

∂f

∂x
+ r cosφ

∂f

∂y

where the black equations are general, and red apply to this coordinate-system
example only.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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We now define a new kind of spatial derivative: the gradient.

Let’s first define it, then discuss what it means. If we have a scalar function of
3D space f(x, y, z), the gradient of f is a vector comprised of the partial

derivatives of f in each direction:

grad f = ∇f = êx
∂f

∂x
+ êy

∂f

∂y
+ êz

∂f

∂z

The symbol ∇, sometimes called “del” or “nabla” (latter: Greek word for a

type of harp) is a vector operator. Some people render it as ∇ or
−→∇ to

make sure we remember that.

The direction of ∇f points along the direction of fastest growth, or most
rapid increase, in f .

In other words, if f(x, y) is the height of a mountain, ∇f points in the
direction of steepest ascent:

The magnitude of ∇f tells us how steep is the steepest slope.
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Let’s look at some specific examples for f(x, y):

∂f

∂x
= +1

∂f

∂y
= +1

∂f

∂x
= −1

∂f

∂y
= +10

Thus, constructing the vector ∇f is just like constructing the “position vector”

r = xêx + yêy + zêz. Go east this much, go north that much, then go up this
much. But here, we do it with slopes.

The directions along which NOTHING

changes (i.e., “level surfaces”) are
always perpendicular to ∇f .

In other words, if we draw “mountain
height” as contours, the gradient
always points along a 90◦ direction to

the local contour curves.

Do you want to take the shortest

path from one “level” up to the next?
Just follow the gradient.

In physics, most gradients will be 3D: ∇f(x, y, z). Think of a dog sniffing
for a scent... the vector points toward the most rapid increase in the

concentration of f .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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There’s one additional piece of information that may be helpful to visualizing
what a gradient is...

Remember our coordinate-system unit vectors? They point along the

direction of maximum growth for a given coordinate. Thus, the formal way
to define one of them is:

êw =
∇w

|∇w| where w could be x, y, r, θ, etc.; any coordinate.

We’ve extended the concept of derivatives to multiple dimensions... and we can
do that with integrals, too. Thus: MULTIPLE INTEGRALS.

If a regular 1D integral gives us the area under a curve, then we can define a
2D integral to give us the volume:

∫ b

a

dx f(x)

∫∫

dA f(x, y)

How do we carry out this new kind of double integral? Similar philosophy as

taking partial derivatives... just do one dimension after another, while holding
the other variable constant.

There are two ways to do it:
∫∫

dA f(x, y) =

∫ b

a

dx

[∫ d

c

dy f(x, y)

]

=

∫ d

c

dy

[∫ b

a

dx f(x, y)

]

where, in each case, the successive integrals are evaluated “inside-out...”

(see next page!)
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• In the 1st case, the red f is evaluated by integrating with respect to y,
holding x constant. Then the result in square brackets is just a function

of x, and the outer integral is done with respect to x as usual.

• In the 2nd case, the blue f is evaluated by integrating with respect to x,
holding y constant. Then the result in square brackets is just a function

of y, and the outer integral is done with respect to y as usual.

Fubini’s theorem: because we’re just summing up little pieces of volume,
it doesn’t matter in which order you do the “partial integrals.”

I think nearly all of the multiple integrals in this course will be given as
definite integrals (i.e., “known” limits in all dimensions).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Silly example: what’s the volume of a box of length L, width W , height H?

The function to integrate is the height, z = f(x, y) = H. The integration limits
are straightforward...

V =

∫∫

dA f(x, y) =

{∫ L

0

dx

[∫ W

0

dy H

]}

= H

{∫ L

0

dx
[

y
]W

0

}

= WH

{∫ L

0

dx

}

= WH
{

x
}L

0

= LWH . X
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We can extend the concept of multiple integrals to other coordinate systems,
but we have to use the proper volume elements. For example, cylindrical
coordinates:

Instead of integrating over a rectangle in

the (x, y) plane, it’s straightforward to
integrate over a “wedge” in (r, φ).

This way, the limits on the integrals
(a, b, c, d) can just be numbers.

However, the “area element for the x, y

plane in cylindrical coordaintes is:

dA = (dr)(r dφ) = (r dr)(dφ)

and that rearrangement is useful for

figuring out what goes into each partial
integral:

∫∫

dA f(r, φ) =

∫ r=b

r=a

dr r

∫ φ=d

φ=c

dφ f(r, φ)

Written this way, the inner integral is done with respect to φ (holding r

constant), then the result is a function of r. The outer integral contains an
“extra” factor of r that can’t be neglected.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Another silly example: What’s the area of a circle of radius R?

This time, z is just a “dummy coordinate” of height 1:

The real action is in the (r, φ)-plane limits:
• Limits in φ: 0 to 2π ... all the way around.

• Limits in r: 0 to R only.

A =

∫ r=R

r=0

dr r

∫ φ=2π

φ=0

dφ [1] = 2π

∫ r=R

r=0

dr r = 2π

[
r2

2

]R

0

= πR2 X

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Another example: What’s the volume of a sphere of radius R? We will start
with just half of this problem: a hemisphere:

The “height” of the surface is given by

z = f(r, φ) =

{ √
R2 − r2 , if r ≤ R,

0 , if r > R.

and note that the function doesn’t depend on φ. The volume is a double
integral with the same limits as the circle case:

V =

∫ r=R

r=0

dr r

∫ φ=2π

φ=0

dφ f(r, φ) = 2π

∫ r=R

r=0

dr r
√

R2 − r2

I looked up how to do this integral in Wolfram Alpha...

V = −2π

3

[

(R2 − r2)3/2
]R

0
=

2πR3

3
.

This is just for the “top half.” The full sphere volume is double that, so

Vsphere =
4πR3

3
X

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It’s interesting how you can get either areas or volumes out of double integrals.

The process of integrating over dA gives you an A for the base. Then, if the
integrand is a height, then you’ve got V = {area of base}{height}.
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Alas, not all multiple integrals can be evaluated with integration limits that
are just pure numbers.

• In 2D Cartesian, “pure numbers” limits us to dA = rectangles.

• In 2D cylindrical, “pure numbers” limits us to dA = circular wedges.

What if the dA shape is more general?

If we can describe the shape with functions of x and y, we can still do these
kinds of integrals. But now, order matters. Let’s see an example:

The bottom and top of the purple
region are defined by:

y =
x3

54
and y =

√
8x

3

The left and right are defined by:

x = 0 and x = 6 .

At any point along the x axis, between 0 and 6, the upper and lower limits for

the y integral are known (just like if the region was a simple rectangle), it’s
just that those limits VARY as a function of x.

But that’s okay! If the inner integral is done over y, those x-dependent limits
will just carry over into the outer integral.

Let’s figure out the area of the purple region. Thus, our integrand is just

f(x, y) = 1,

A =

∫ x=6

x=0

dx

∫ y=
√

8x/3

y=x3/54

dy [1] =

∫ 6

0

dx

[√

8x

3
− x3

54

]

= ❀ ❀ = 10 .

So, really, the area is just the area under the red curve, minus the area under
the blue curve, as it ought to be.

But we can now put in other integrands, to get volumes!
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Let’s note one more thing: we can change the order of integration, but we
have to be careful. If we turn our heads 90◦, the new bottom & top of the
purple region are described by “inverse functions:”

x =
3y2

8
and x = (54y)1/3

and the “left” and “right” sides are defined by:

y = 0 and y = 4 .

Thus, we can also compute the area in a new way, and it ought to have the

same value...

A =

∫ y=4

y=0

dy

∫ x=(54y)1/3

x=3y2/8

dx [1] =

∫ 4

0

dy

[

(54y)1/3 − 3y2

8

]

= ❀ = 10 . X

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

All of our previous examples were “double” integrals. In physics, we often see

triple integrals.

It’s difficult to visualize how to integrate “under” a 3D curve f(x, y, z).
Our brains don’t work in 4D space!

However, we’ve been lazy. In our 2D drawings, we’ve wasted one of those
precious dimensions to show the magnitude of some quantity. (Yes,

sometimes that magnitude was truly interpreted as another dimension—i.e.,
integrating the height over dA to get volume.)

But we didn’t need to do that. What we thought of the function f as the
concentration of “stuff,” say red ink?

Thus, f(x) can be shown in 1D, f(x, y) in 2D, and f(x, y, z) in 3D (sort of):
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Recall the way we pictured the gradient in 3D. Like a dog sniffing for a scent...
the gradient ∇f(x, y, z) points toward the most rapid increase in the
concentration of f .

Thus, if f is the “number density” of scent molecules in the air (# per m3),
the triple integral over f(x, y, z) sums up the total number of molecules over

a specified region of space:

∫∫∫

dV f(x, y, z) =

∫ x2

x1

dx

∫ y2

y1

dy

∫ z2

z1

dz f(x, y, z) .

Of course, if the function f(x, y, z) is just 1, then the triple integral over dV
by itself just gives the 3D volume of the region being integrated.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In other coordinate systems, The “volume element” dV is the product of

differential lengths in each dimension along the displacement vector dr, with

Cartesian: dV = dx dy dz

Cylindrical: dV = (dr) (r dφ) (dz) = r dr dφ dz
Spherical: dV = (dr) (r dθ) (r sin θ dφ) = r2 sin θ dr dθ dφ

As another example, we can re-compute the volume of a sphere by using
spherical coordinates. With the integrand f = 1, it’s just the product of
3 separate integrals:

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ R

0

dr r2 =

= 2π
[

− cos θ
]π

0

[
r3

3

]R

0

= 2π (2)

(
R3

3

)

=
4πR3

3
. X
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Another example: consider a protoplanetary disk around a newly-formed
Sun-like star. It has an “opening angle” of 10◦ and is observed to be filled with
stuff that has a mass density that depends only on radial distance:

ρ(r) = ρ0

(
R⊙
r

)3.5

where R⊙ is the radius of the star (assumed equal to the Sun) and ρ0 is
measured to be 3 kg/m3.

What is the total mass of the disk? How does it compare to the mass of the
central star (M⊙)?

Density = mass/volume, so we need to integrate the density “over” the entire
volume of the disk:

Mdisk =

∫∫∫

dV ρ(r, θ, φ)

where the geometry of this problem points us to spherical coordinates as the

most natural choice. Thus...

Mdisk =

∫ 2π

0

dφ

∫ θ2

θ1

dθ sin θ

∫ ∞

R⊙

dr r2 ρ(r)

where θ1 = 85◦ and θ1 = 95◦ describe the 10◦ opening angle. So,

Mdisk = 2πρ0R
3.5
⊙

[

− cos θ
]θ2

θ1

[

− 2r−1/2
]∞

R⊙

= 4πρ0 R
3
⊙

[

cos θ1 − cos θ2

]

,

and that last part in square brackets is ≈ 0.174. Thus, Mdisk ≈ 2.2 ρ0R
3
⊙.

Plugging in ρ0 and R⊙, we get Mdisk/M⊙ ≈ 0.001, which makes sense since
that’s similar to the total mass of all the planets in our solar system.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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In astronomy, we often work with solid angles on the sky. The entire sky is a
full sphere; i.e., a “closed surface” that is sometimes denoted by a special
integration symbol:

∮

dΩ =

∫ 2π

0

dφ

∫ π

0

dθ sin θ

If the integrand is 1, you can see that the integral is just
∮

dΩ = 2π
[

− cos θ
]π

0
= 2π (cos 0− cosπ) = 4π

which is the number of steradians in a full sphere.

You may also see the
∮
symbol used for integrals like WORK, in cases where

the path followed by the particle closes back on itself.

Next topic: OTHER VECTOR DERIVATIVES

You’ve seen deriv’s of vectors with respect to scalars: v =
dr

dt

You’ve seen deriv’s of scalars with respect to vectors: ∇f = “
df

dr
”

and here we need to define 2 new types of derivatives of a vector field (like
velocity v or force F) with respect to the vector position r.

Just like we had dot & cross products for vector multiplication, these two new

vector derivatives are similar:

Divergence and Curl:

∇ · F ∇× F
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Divergence measures how much a field spreads out from a given point.
Curl measures how much a field swirls or torques around a given point.

∇ · F =
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
∇× F =

∣
∣
∣
∣
∣
∣

êx êy êz
∂/∂x ∂/∂y ∂/∂z
Fx Fy Fz

∣
∣
∣
∣
∣
∣

or, for Cartesian coordinates:

∇× F = ex

(
∂Fz

∂y
− ∂Fy

∂z

)

+ ey

(
∂Fx

∂z
− ∂Fz

∂x

)

+ ez

(
∂Fy

∂x
− ∂Fx

∂y

)

.

In other words, you can think of the ∇ operator as a vector with the

components

∇ = ex

(
∂

∂x

)

+ ey

(
∂

∂y

)

+ ez

(
∂

∂z

)

and the definitions of gradient, divergence, & curl line up better with concepts

of scalar multiplication, dot product, & cross product.

In other coordinate systems, the way to write ∇ is more complicated, just like

for the extra terms in v & a vectors in dynamics. We can always look them up
in the “useful formula” document.

Note: ∇ always represents a derivative with respect to length units.

We’ll talk about each operation in more detail, including another new one
called the Laplacian (∇2f = ∇ · ∇f), but for now here’s a summary:

Gradient ∇f = vector Measures the rate & direction of
maximum change in a scalar field

Divergence ∇ · F = scalar Measures the strength of a point-like
source or sink at a given location in a

vector field

Curl ∇× F = vector Measures the tendency for a vector field

to rotate about a given point

Laplacian ∇2f = scalar Measures how “steep” are local changes
in a scalar field (i.e., large ∇2f means

sharp edges exist in f)
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More about Divergence

In general,

• If ∇ · F > 0, then F is an expanding vector field.

• If ∇ · F < 0, then F is an converging vector field.

If you can draw a little cube around a region, and the divergence is positive

inside, you can think of that box containing an ever-spewing SOURCE of the
stuff that |F| measures the concentration of.

Similarly, a little cube surrounding a region of negative divergence
essentially contains a tiny “attractor,” or SINK, that is continually allowing
stuff to be pulled in (accumulate) over time.

The case of ∇ · F = 0 is special. If there are no sources or sinks, then that
means no “particles” are being created or destroyed in the little box.

However, it’s possible for there to still be some particles flowing into the cube,
as long as an equal number are flowing out. Examples of zero divergence:

The first example is just F = constant. Any derivative of a constant is zero.

The second one is what we sometimes call a “split monopole.” The field points

inward in one hemisphere, outward in the other, so the net flux of stuff
through the sphere is zero.

The third one is deceptive. It sort-of looks like a piece of a larger thing with

positive divergence. But the actual result (i.e., is ∇ · F + or − or 0?) depends
on how much stuff is streaming through both ends. Does it balance?
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In spherical coordinates, we can write it as a radial vector with F = (rn)êr.
The full definition of the divergence is:

∇ · F =
1

r2
∂

∂r

(
r2Fr

)
+

1

r sin θ

∂

∂θ
(sin θ Fθ) +

1

r sin θ

∂Fφ

∂φ

and thus, for our radial-only vector,

∇ · F =
1

r2
∂

∂r

(
r2Fr

)
=

1

r2
∂

∂r

(
r2+n

)
=

{
(2 + n)rn−1 , if n 6= −2

0 , if n = −2 !

If you’re in a region of space where F is dropping off as the inverse-square of
radial distance, this means there are NO local sources or sinks where you

are sitting now, at distance r from the origin.

(However, there may be sources or sinks elsewhere; say at the origin?!?)

We will see that vector fields due to gravity & electric charges act like this,
when there are point-like sources and surrounding “free space.”

Other vector fields, like the magnetic field, have zero divergence everywhere...
i.e., “there are no magnetic monopoles.”

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

More about Curl

The right-hand rule is helpful for interpreting its meaning:

• If (∇× F)x > 0, then F swirls counter-clockwise around the x-axis.
• If (∇× F)x < 0, then F swirls clockwise around the x-axis.

However, the use of “swirling” may be misleading. A vector field may have
∇× F 6= 0 even when NOT appearing to circulate.

Imagine little “paddle-wheels” oriented along each axis:
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For the one aligned with the z axis, if the vector field F would push the
paddle-wheel in the counter-clockwise direction, then the z-component of
∇× F would be positive.

If it pushes clockwise, then the z-component of ∇× F would be negative.

The magnitude of the curl (in each direction) is proportional to how “fast” the

paddle wheel will turn; i.e., the strength of the “torque” around that axis.

Div was a scalar, but curl is a vector. Three components are needed, because

3D flows are complex. The flow may turn one of the wheels, while not affecting
the others.

Note that you can have a nonzero curl even if the vectors are straight lines!

The following shear flow has a curl:

In this case, the z-component of the curl vector is 6= 0. What’s its sign?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The handout gives various kinds of identities that boil down to the chain rule.
Again: you don’t have to memorize them, but it’s good to know they exist.

Just like how dot & cross products “pick out” completely different (mutually
orthogonal) projections of a vector, the div and curl (or the grad and curl)

cancel each other out:

∇×∇f = 0 ∇ · ∇ × F = 0 .
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Div and gradient are kind of like “siblings.” Thus, when combined, they form
a second derivative:

∇ · ∇f = ∇2f 6= 0 (“Laplacian operator”)

We’ll see the Laplacian operator crop up again. For now, let’s just have a look

at what it looks like in Cartesian coordinates:

∇2f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

One additional physics application: a call-back to Newtonian dynamics.

Recall the concept of a conservative force. The work done as you go along a
path from a to b does not depend on which path you choose:

Wab =

∫ b

a

F · dr = Ua − Ub .

Conservative forces correspond to specific kinds of vectors, and we now have

the language to describe them.

We can now say some additional things about conservative vector fields:

(1) Notice that if a = b (i.e., the path is a closed loop), then

Waa =

∮

F · dr = 0 (because Ua = Ua).

(2) All conservative fields can be written as the gradient of a scalar potential

function:
F = −∇U

where the minus sign is a typical convention in physics.

We can prove it. Let’s assume that F = −∇U , and show that we get the
familiar definition for the work:

Wab =

∫ b

a

F · dr = −
∫ b

a

(∇U · dr) = −
∫ b

a

(
∂U

∂x
dx +

∂U

∂y
dy +

∂U

∂z
dz

)

(continued on next page)
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The previous step is equivalent to

Wab = −
∫ b

a

(
∂U

∂x

dx

dt
+

∂U

∂y

dy

dt
+

∂U

∂z

dz

dt

)

dt = −
∫ b

a

dU

dt
dt

where the last part is just the total derivative of a function U(x(t), y(t), z(t)).
Thus,

Wab = −
∫ b

a

dU = −(Ub − Ua) = Ua − Ub

which is what we used in Newtonian dynamics.

(3) Since the curl of a gradient is always zero, it’s true that all conservative
forces must obey:

∇× F = 0

which should make intuitive sense in the case of gravity, since there was
nothing “swirly” about that force-law: it points radially inward toward the

source of mass.

4.21



PARTIAL DIFFERENTIAL EQUATIONS

There are dozens of courses at CU Boulder devoted solely to solving these
“PDEs.” We will just survey a few commonly-seen types of these equations,

and take note of what they mean in terms of physical applications.

For a function f(x, t) of position and time, it may obey something like the

advection equation:
∂f

∂t
+ Vx

∂f

∂x
= 0

where Vx is a constant.

The solution for f(x, t) is a pattern that drifts along the x-axis, over time, with
a speed of Vx:

f(x, t) = f0(x− Vxt) .

and the “template” of the pattern f0(x) can be anything.

We won’t show how the PDE can be solved to get the solution, but we can
show that the solution does satisfy the PDE. Take the 2 partial derivatives:

∂f

∂x
=

∂f0
∂x

and
∂f

∂t
= −Vx

∂f0
∂x

.

If the “drift” is happening in 3D space, the advection equation for f(r, t)

generalizes to:
∂f

∂t
+ Vx

∂f

∂x
+ Vy

∂f

∂y
+ Vz

∂f

∂z
= 0

but that is just
∂f

∂t
+ V · ∇f = 0
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and the corresponding solution is

f(r, t) = f0(r−Vt) .

In the advection equation, the general “operator” that operates on f arises a
lot in physics, and is sometimes called the advective derivative (or material

derivative):
D

Dt
=

∂

∂t
+ V · ∇

It’s a derivative with respect to time, but it follows around a “parcel” that is

moving through space with velocity V

i.e., it’s unlike ∂/∂t, which looks at the change in time only at one fixed

location in space.

Silly example: You’re sitting in a meadow, watching the trees. f is the
“density” of leafy green stuff that you see.

If we’re just sitting still, the trees are (slooooowly) growing where they stand.
Nothing is moving around in space. Thus, f = f(t) only, and the only rate of

change you see is ∂f/∂t.

However, what if we’re in a boat on a river, drifting along the x direction, and

the trees are getting denser/thicker as we go down river. In our reference
frame, f = f(x, t), and our position x is a function of time.

f = f(x(t), t) ,
Df

Dt
=

∂f

∂t
+

dx

dt︸︷︷︸
vx

∂f

∂x
(chain rule!)

In other words, Df/Dt is the same as the “total derivative.”

If f increases as x increases, then ∂f/∂x > 0. Df/Dt gives us the summed

effect of the two kinds of “increase” in tree density that we see:
in time, and in space.

The advection equation PDE is thus:
Df

Dt
= 0

and a quantity that obeys it remains time-steady (i.e., unchanging in time)
within its moving frame of reference.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Another common PDE is the wave equation. Again, starting in 1D with
f(x, t), the wave equation is

∂2f

∂t2
= V 2 ∂

2f

∂x2

and it has oscillating sinusoid type solutions like

f(x, t) = A sin(kx− ωt+ φ0) where V = ω/k is the wave phase speed.

Actually, k = ±ω/V , since it supports waves going in both directions along x.

You can freely choose either ω or k, but not both.

The amplitude A and phase φ0 are arbitrary; any values satisfy the wave

equation. The angular frequency ω and wavenumber k relate to some other
commonly-seen quantities:

period = P =
2π

ω
frequency = ν =

ω

2π
=

1

P

wavelength = λ =
2π

k
.

Note that a sum of multiple sinusoids, each with arbitrary amplitude and
phase, also satisfies the wave equation (as long as they all describes waves that

propagate with ±V ).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We won’t say too much about the diffusion equation, but it’s good to at
least know it exists. It is a hybrid: 1st order in time, 2nd order in space:

∂f

∂t
= D

∂2f

∂x2

where the diffusion coefficient D has units of length2/time.

If the function f(x, t) is “sharply peaked” at t = 0, the diffusion equation
describes a time evolution that continuously spreads out the peak.

See example solution plot on next page:
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There’s a clear directionality of time to the diffusion equation. Any initial
“structure” is eventually & irreversibly smeared out as t marches on.

As t → ∞, f diffuses to a constant value. If x subtends all space, f → 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For many of the above, in 3D one should replace ∂f/∂x by ∇f , and
∂2f/∂x2 by ∇2f (the Laplacian).

If there is no change in time, then both the 3D wave equation and the 3D

diffusion equation reduce to Laplace’s equation:

∇2f = 0 .

Such a simple-looking little equation can exhibit some complex behavior, as we

will see in E&M and quantum mechanics.
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