
ASTR-2100: Fundamental Concepts in Astrophysics . . . Spring 2023

This course is meant to provide you with a full toolbox for advanced courses
in astrophysics, planetary science, and solar/space physics, and the skills to use

those tools.

On the first day of class, we’ll go through the syllabus in detail and discuss

what components go into your total course grade.

These lecture notes are the primary “textbook” for the course (so please read
everything, even if we skip some parts in class). Other books and online

resources are listed in the syllabus & web page.
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Several things about math...

• This course is mostly about physics and its application to stuff “out there”
in the universe, but math is an important tool we use to make sense of it
all.

• Thus, you’ll get a handout with useful mathematical formulae. Some of
what’s in there should be a review of what you’ve learned in eariler
courses, and some may be new. You can use the handout as a resource for

homeworks. (For exams, I’ll provide the bits & pieces you’ll need.)

• We’ll also do a lot of approximating! Seeing this done may be

surprising, if you’re used to every problem having an exact solution.

For scientists doing research, approximation/assumption is something we

do all the time...

It’s an art to figure out







what to simplify
what to neglect

what to flat-out ignore

Hopefully, by seeing how it’s done (both here and in other courses) you’ll
start to get a feel for doing it yourself. It takes a while...

= the “exact equality” will often give way to

≈ “is approximately equal to,” or sometimes even

∼ “very roughly equal to” (within an order of magnitude!?)

∝ and sometimes we just care about which quantities are

“proportional to” one another, ignoring normalizing constants.

• You should have a calculator that uses scientific notation.
(Good free phone-app: TechCalc. Good web resource: Wolfram Alpha.)

Googling answers to math problems at this level can be unreliable...
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BRIEF MATH/PHYSICS REVIEW

Some topics from earlier calculus & physics classes that will crop up a lot:

• Scientific notation is super-useful for writing “astronomically” large or
small numbers compactly... 43,200,000,000,000 = 4.32× 1013.

• We’ll certainly encounter derivatives & integrals of basic functions.

• Logarithmic plots help us find trends in data that may be hard to see:

• Metric units & conversions should be familiar, but please always feel
free to use the handout to look up unfamilar prefixes. We’ll stick with SI

(“mks”) as much as possible.

• Proportional reasoning is helpful, because we sometimes care much
more about relative relationships between quantities, and not so much

about solving for exact numbers...
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ANGLES & TRIGONOMETRY

We’ll be using the classic trigonometric functions a lot, so it’s good to recall
their definitions, too:

For angles in physics formulas, we will often use units of radians because they

are the most natural; i.e., the quantity rθ is the actual path-length along a
wedge (of angle θ) of a circle of radius r.

1 circle = 360◦ = 2π radians (rad)

1 radian = 360◦/2π = 180◦/π ≈ 57.296◦

1 degree = 60′ (i.e., 60 arcminutes) = 3600′′

1 arcminute = 60′′ (i.e., 60 arcseconds)

Thus, 1 rad ≈ 206,265′′ & 1 circle = 1,296,000′′

Radians are also useful in the “small-angle limit.” For θ ≪ 1,

x ≈ r , so sin θ =
y

r
≈ y

x
= tan θ

y ≈ rθ , so sin θ =
y

r
≈ rθ

r
= θ
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What is cos θ in the small-angle limit?

Very roughly, we see that cos θ = x/r ≈ 1. But sometimes it’s best to be a bit
more accurate.

If sin θ ≈ θ, and cos θ =
√

1− sin2 θ, then

cos θ ≈
√

1− θ2 ≈ 1 − θ2

2

where the last approximation comes from the binomial expansion for small

quantities:

For |x| ≪ 1, (1 + x)n = 1 + nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + · · ·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When looking at distant sources on the sky, very small angles are the norm.

For example: parsecs!

When p = 1′′, we define D = 1 parsec (PARallax of one arcSECond).

As D increases, p decreases, and the small-angle approximation gives the usual
expression:

tan p =
1 AU

D (in AU)
≈ p (in radians)

This is equivalent to
1

D (in parsecs)
≈ p (in arcseconds) .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The last trig topic is to generalize from angles to solid angles.

When we use radians for angle θ, the arc-length along a circle of radius r is

ℓ = rθ

and the circumference of a full circle is defined when we reach θ = 2π,

because we know that C = 2πr. (This is why 2π radians = full circle!)

Similarly, for a sphere of radius r, let’s define the solid-angle quantity Ω

(in units of steradians) so that it covers a given area

a = r2Ω

on the sphere’s surface. The sphere’s full area is A = 4πr2. Thus, a full sphere

is covered by a solid angle of Ω = 4π.

For small solid angles (i.e., distant sources), it’s easy to make more direct use
of the analogy:

angle

length
=

solid angle

area
.

For example:

• For a tiny CIRCULAR patch “on the sky” with angular radius θ, Ω ≈ πθ2 .

• For a tiny SQUARE patch “on the sky” subtending angle θ on one side, Ω ≈ θ2 .

1.6



VECTOR ANALYSIS

Scalars are fine if you just want to measure the magnitude of a quantity.

Vectors are needed if a quantity has a magnitude and a direction

(e.g., wind velocity in a weather report). Convention: bold V or arrow
−→
V .

Another example: forces in physics, like gravity:

In drawings like this, the “length” of the vector is only a schematic way of

visualizing the magnitude. A given amount of force doesn’t really correspond
to an actual length as shown here.

Note: Some quantities have direction ONLY, without a magnitude. For them,

we use unit vectors, which always have length = 1.
Convention: “hatted” lower-case n̂.

In Cartesian coordinates, there are three unit vectors that allow us to specify
magnitudes along each of the axes:

êx vector tip coordinates (1,0,0) sometimes called i or x̂
êy vector tip coordinates (0,1,0) sometimes called j or ŷ

êz vector tip coordinates (0,0,1) sometimes called k or ẑ

Thus, any vector can be specified by giving its magnitudes in the three
Cartesian directions:

Example: F = 3êx + 5êy + 7êz .
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The magnitude of a vector is its total 3D “length,”

|F| = F =
√

F 2
x + F 2

y + F 2
z

For the example above, |F| =
√

32 + 52 + 72 =
√
83 ≈ 9.1 .

(Remember: units of vector magnitude don’t have to be actual length.)

In physics, both scalars and vectors will tend to be continuous functions of
both position and time...

scalar f(x, y, z, t) ; vector v(x, y, z, t) is really made up of:

vx(x, y, z, t)êx + vy(x, y, z, t)êy + vz(x, y, z, t)êz .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vector Addition

The sum of two vectors A and B can be constructed by placing them

end-to-end (i.e., placing the initial point of B at the end point of A) and
constructing a new vector that goes from the initial point of A to the end

point of B.

Thus, A+B is the “summed effect” of following both vectors in succession:

Note: A +B = B+A, as it ought to be for anything we call “addition.”

Vector addition is not just adding their magnitudes! The diagram above brings
to mind the “triangle inequality” from geometry. In general, it’s true that

|A +B| ≤ |A|+ |B| .
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Another way to think about vector addition is that the Cartesian components
add together like normal scalars:

{

A = Axêx + Ayêy + Azêz
B = Bxêx +Byêy +Bzêz

}

=⇒ A+B = (Ax +Bx)êx + (Ay +By)êy + (Az +Bz)êz .

Thinking of some familiar things as “summed vectors” can be a useful aid to
memorization:

You may already know every fact given in
the triangle pictured here. However, if the

x and y axes are treated like vectors, their
sum (the hypotenuse) should be something you

can compute without having to know anything
about triangles...

v =
√

v2x + v2y =
√

v(sin2 θ + cos2 θ) = v

The Pythagorean theorem is something else you can just “derive!”

Vector Multiplication

We’ll get to vector subtraction in a minute, but it’s actually easier to start by
talking about one of the (several!) types of vector multiplication.

(1) Scalar Multiplication:

If we add v + v, that’s the same as 2v. Also, v + v + v = 3v, and so on.

Thus, we can multiply a vector v by any scalar number k, so that the result is
a vector with magnitude |k| times the magnitude of the original v.

Note that if k is negative, the new direction of the vector is opposite that of
the original v.
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The magnitude of the vector kv is just: |k| |v|.

Also, scalar multiplication can be used to normalize any vector;
i.e., convert it into a unit-vector of length 1:

n̂ =
v

|v| .

Here, n̂ points in the same direction as v, but the magnitude information has

been “removed.”

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This now lets us talk about...

Vector Subtraction

The “difference” between two vectors is the difference between their two
end-points (if they have the same initial point).

However, a more natural way of thinking about it is to realize that

V −W = V + (−W)

where we use the above definition of the negative of a vector:

(It’s still the same vector even if it is “translated” in space.)

When broken down into components, the definition of subtraction is

straightforward, too:

{

A = Axêx + Ayêy + Azêz
B = Bxêx +Byêy +Bzêz

}

=⇒ A−B = (Ax −Bx)êx + (Ay − By)êy + (Az −Bz)êz

(and some books use this as the main definition of vector subtraction, rather

than the above visual ideas about arrows).
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Example: Using Vectors to Describe Motion

We now know enough to apply vectors to kinematics: the study of motion.
We’ll often describe the position vector of an object as

r(t) = x(t)êx + y(t)êy + z(t)êz .

As long as we specify a coordinate system (i.e., where is the origin), this vector
points to the position of an object that moves over time.

Just like in Physics 1, we can take time derivatives to describe the velocity of
the object:

v(t) =
dr

dt
=

dx

dt
êx +

dy

dt
êy +

dz

dt
êz

(

where we call vx =
dx

dt
, etc.

)

and “speed” is a scalar equal to the magnitude of the velocity vector: |v|.
Also, we can keep differentiating to get the acceleration:

a(t) =
dv

dt
=

d2r

dt2
=

dvx
dt

êx +
dvy
dt

êy +
dvz
dt

êz =
d2x

dt2
êx +

d2y

dt2
êy +

d2z

dt2
êz

and we can also integrate to go backwards... For example:

r(t) =

∫ b

a

dt v(t) =

(
∫ b

a

dt vx(t)

)

êx +

(
∫ b

a

dt vy(t)

)

êy +

(
∫ b

a

dt vz(t)

)

êz .

Lastly, it’s sometimes useful to consider the numerator of the velocity

derivative as a thing unto itself: an infinitesmial displacement vector:

dr = (dx)êx + (dy)êy + (dz)êz

If we decided to integrate just this quantity over time, we would obtain the

total path length:

ℓ =

∣

∣

∣

∣

∫

dr

∣

∣

∣

∣

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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What do we do with these quantities? Apply Newton’s second law... which can
be written as a vector equation (with some scalar multiplication thrown in to
make the units work out):

F = ma .

Let’s work out the classic example of projectile motion.

Assume the flat ground is the x-axis, “up” is the y-axis, and we can ignore z:

There’s only one force: gravity, which
supplies a constant acceleration in the

downward (minus y) direction:

a = −g êy

Thus, we can integrate to get the vector velocity. Note the integration constant

is now a vector C...

v(t) =

∫

a dt =

∫

(−gêy) dt = −gt êy + C

However, when t = 0, v = C, so we can call C = v0.

Note that the initial velocity v0 can point in ANY direction. Thus,

v(t) = v0 − gt êy

and we can integrate again to get the position vector r,

r(t) =

∫

v dt = r0 + v0t +−1

2
gt2 êy

where we did the same trick with the vector integration constant.

Just like in Physics 1, the answer breaks down into separate components for
the horizontal and vertical motion:

x(t) = x0 + vx,0t y(t) = y0 + vy,0t−
1

2
gt2

but vectors allowed us to “do the physics” all in one piece.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(Back to) Vector Multiplication

For scalars, just one “type” of multiplication was all we needed. However, for
vectors, we need more...

(2) The Dot Product: A ·B = AB cos θ

It’s the projection of A along B, and also the projection of B along A.

θ is the angle “between” the vectors.

Note: (A cos θ)B = A(B cos θ)

Overall, it tells you how well 2 vectors line up:

If A is parallel to B, A ·B = AB (max)

If A is perpendicular to B, A ·B = 0

If A is anti-parallel to B, A ·B = −AB (min)

And, of course, A ·A = |A|2 = A2

Note: it only makes sense to talk about θ being between 0 and 180◦.

One can also compute the dot product using components:

A ·B = AxBx +AyBy + AzBz .

and it’s clear how this also tells us that A2 = A ·A.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: The Doppler Effect

You know it already...

However, for an object moving arbitrarily in 3D, the redshift/blueshift only

depends on the component of the motion along the observer’s “line-of-sight.”
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Consider the velocity vector V as something with real units, and a unit-vector
n̂ that points from the moving object to the observer:

Thus, the scalar VLOS = V · n̂, and it can be positive, negative, or zero.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3) The Cross Product: A×B = (AB sin θ) n̂

where n̂ is a unit vector perpendicular to both A and B, with a direction

formed by the “right-hand rule:”

The cross product picks out how well 2 vectors are transverse to one another:

If A is parallel to B, A×B = 0 (min)

If A is perpendicular to B, |A×B| = AB (max)

And, of course, A×A = 0

Interestingly, the magnitude of a cross product is equal to the area of the

parallelogram formed by A and B:
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In Cartesian coordinates, it’s a matrix determinant,

A×B =

∣

∣

∣

∣

∣

∣

êx êy êz
Ax Ay Az

Bx By Bz

∣

∣

∣

∣

∣

∣

A×B = êx(AyBz −AzBy) + êy(AzBx −AxBz) + êz(AxBy −AyBx)

Note that for the cross product, order matters: A×B = −(B×A).

Also: A× (B×C) 6= (A×B)×C . . . so we need to be careful.

Here’s a quick review of matrix determinants, but you won’t be asked to

memorize how to do them:

In physics, the cross product is useful in cases where quantities have the most

effect when they’re NOT lined up – e.g., torque, magnetic fields.

The handout gives various kinds of commutative, distributive properties. You

don’t have to memorize them either, but it’s good to know they exist.
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COORDINATE SYSTEMS

Depending on the symmetries in a system, we might find it more useful to
use other 3D coordinate systems besides good old Cartesian (x, y, z).

Cylindrical coordinates replace x and y by “polar coordinates” r and φ
(where φ is measured counter-clockwise from the +x axis), and they keep

z the same:

x = r cosφ
y = r sinφ

z = z

r =
√

x2 + y2

φ = tan−1(y/x)

z = z

Of course, despite the fact that x, y, and z can take on values from

−∞ to +∞, we can see that we must have:

0 ≤ r < +∞ and 0 ≤ φ ≤ 2π .

Note that a “surface” defined by a constant value of r (i.e., the collection of all

possible points that have that value of r) is just a cylinder that extends up
and down in the z direction indefinitely.

In some textbooks, the horizontal distance from the z-axis (which we call r) is
called ρ or ̟ or R. The azimuthal angle φ is sometimes called θ.

In physics, cylindrical coordinates are useful for objects that exhibit

“axisymmetry” (i.e., rotational symmetry around one axis), like accretion
disks, or currents & magnetic fields associated with a straight wire.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Cartesian coordinates describe a point in 3D space by 3 numbers that each
represent distances.

Cylindrical coordinates describe a point using 2 distances and 1 angle.

Can we describe a point with 1 distance and 2 angles? Yes...

Spherical coordinates are the natural choice for systems in spherical

symmetry. There’s just one radius coordinate r that describes how far from
the origin a point is, and its location on an imaginary sphere is described by

two angles θ and φ:

x = r cosφ sin θ

y = r sinφ sin θ
z = r cos θ

r =
√

x2 + y2 + z2

θ = cos−1(z/r)

φ = tan−1(y/x)

The azimuthal angle φ (which is sort of like longitude) is the same as in

cylindrical coordinates. It can extend from 0 to 360◦.

The polar angle θ (which is sort of like latitude, and is sometimes called
“co-latitude”) only goes from 0 to 180◦, with:

• θ = 0 at the north pole,
• θ = 90◦ at the equator,

• θ = 180◦ at the south pole.

Horrifically, some books switch the meanings of θ and φ, but most physicists

and astrophysicists define them the way we do here.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The “useful formulas” handout contains many other conversions and identities

for vector operations in these other coordinate systems.

1.17



When doing vector addition & subtraction, it’s best to stick with Cartesian
coordinates (i.e., convert from either cylindrical or spherical to Cartesian,
then add them, then convert back).

When doing vector multiplication, one can just use non-Cartesian components:

Cylindrical:

A ·B = ArBr + AφBφ +AzBz

A×B = (AφBz − AzBφ)êr + (AzBr −ArBz)êφ + (ArBφ − AφBr)êz

Spherical:

A ·B = ArBr + AθBθ + AφBφ

A×B = (AθBφ −AφBθ)êr + (AφBr − ArBφ)êθ + (ArBθ −AθBr)êφ

For the cross product, it’s important to maintain the proper order:
(x, y, z) or (r, φ, z) or (r, θ, φ).

Note that some of the cylindrical and spherical unit vectors are not fixed in
space like the Cartesian ones are. As the coordinates change, the unit vectors
swivel around...

For any coordinate w, êw points in the direction of increasing w.

The fact that some unit vectors swivel will cause trouble later when we define
new kinds of vector partial derivatives.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Describing Motion in Other Coordinate Systems

Recall the infinitesimal displacement vector?

Its components depend on the coordinate system chosen:

Cartesian: dr = (dx)êx + (dy)êy + (dz)êz

Cylindrical: dr = (dr)êr + (r dφ)êφ + (dz)êz

Spherical: dr = (dr)êr + (r dθ)êθ + (r sin θ dφ)êφ

Each component (in parentheses) must have units of length.

These definitions make more sense when one tries to construct little

“volume elements” using only the ingredients of each system:

We can construct the velocity vector in the same way we did before...

by dividing dr by dt.

v = (ẋ)êx + (ẏ)êy + (ż)êz

v = (ṙ)êr + (r ϕ̇)êφ + (ż)êz

v = (ṙ)êr + (r θ̇)êθ + (r sin θ ϕ̇)êφ

using “dot notation” for time derivatives: ẋ = dx/dt, ẍ = d2x/dt2, and so on.

One interesting quantity we’ll use a lot later is the angular velocity ω around

the z-axis, measured in radians per second. We’ve already defined it: ω = ϕ̇.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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How about acceleration?

Unfortunately, in non-Cartesian coordinate systems, the expressions for a are
even more complicated than the ones for v. We’ll see them soon, but you don’t

need to memorize them.

Why are they so complicated?

Cartesian coordinates are special because:

• IF you’re moving with a constant velocity, parallel to one of the
coordinate axes,

• THEN your acceleration must be zero: a = 0.

However, this isn’t true for non-Cartesian coordinates. As an example, consider

circular motion in the x-y plane, described in cylindrical coordinates:

• The r coordinate remains constant, so

there’s zero velocity along the r-axis.

• The z coordinate remains constant, so
there’s zero velocity along the z-axis.

• There’s a constant velocity along the

φ-axis, but...

• a is not zero!

Due to the change in direction, there’s centripetal acceleration, which you’ve
learned has a magnitude acen = v2φ/r.

We just learned that, in cylindrical coordinates,

vφ = r ϕ̇ , so acen =
r2 ϕ̇2

r
= r ϕ̇2

and you also know it’s pointed inwards to the origin, so the full version is

acen = (−r ϕ̇2) êr .

When this shows up in nature, it’s driven by a force (after all, F = ma), but

its derivation is really just coordinate book-keeping... i.e., in this case it’s
“do whatever is needed to maintain the path being parallel to the φ-axis.”

1.20



The above was just one possible way to move with constant speed along one
coordinate and still have an acceleration.

To see the more general version, we can derive v and a by being more careful

with the derivatives. Specifically, in 2D polar coordinates (i.e., the xy plane of
cylindrical coordinates):

v =
dr

dt
=

d

dt
(rêr) = ṙêr + r

dêr
dt

Recall that, in non-Cartesian coordinates,

the unit vectors aren’t fixed, so they have
derivatives too.

As r changes, the unit vectors pointing to
r swivel around in φ but don’t change in

radial distance. Geometry provides:

dêr = dφ êφ , dêφ = −dφ êr

and dividing each side by dt gives

dêr
dt

= ϕ̇ êφ ,
dêφ
dt

= −ϕ̇ êr

This gives the 2D result: v = (ṙ)êr + (r ϕ̇)êφ (equivalent to cylindrical).

In 3D, one can take the next set of derivatives to give the acceleration
a = dv/dt, in all three coordinate systems.

Cartesian:

a = (ẍ)êx + (ÿ)êy + (z̈)êz

Cylindrical:

a =
(

r̈ − rϕ̇2
)

êr + (rϕ̈+ 2ṙϕ̇) êφ + (z̈)êz

Spherical:

a =
(

r̈ − rθ̇2 − rϕ̇2 sin2 θ
)

êr +
(

rθ̈ + 2ṙθ̇ − rϕ̇2 sin θ cos θ
)

êθ +

+
(

rϕ̈ sin θ + 2ṙϕ̇ sin θ + 2r θ̇ ϕ̇ cos θ
)

êφ
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DIFFERENTIAL EQUATIONS

As one goes further in physics & astrophysics, one will see more differential
equations. Let’s look at how to handle a few important types.

We will mostly see first-order ordinary differential equations (ODEs). These
can be boiled down to

f

(

x, y,
dy

dx

)

= 0 .

and the goal is to solve it for y(x).

We’ll occasionally see second-order differential equations, which contain
d2y/dx2 as well as dy/dx, but: (1) you won’t have to solve them, and

(2) we’ll only bring them up when needed.

There’s one major difficulty with solving a differential equation for y(x).

Usually the equation itself doesn’t contain all the information you need!

Let’s look at a simple example:

f

(

x, y,
dy

dx

)

=
dy

dx
− 2 so the ODE is:

dy

dx
= 2 .

You know that dy/dx is the slope of the curve y(x), so all this equation says is

that the slope must always be 2. This can satisifed by a straight line, but
which straight line is the actual desired solution?

Thus, in order to solve a first-order ODE, we need both the equation and some
boundary condition; i.e., one special value of x (call it x0) where you specify

what y(x) must be (call it y0). That pins down which solution to choose.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Many of the first-order ODEs we will see are separable. This means that it’s
possible to write them in the form

f(x) dx = g(y) dy .

Let’s look at an example:

dy

dx
= x5 y −→

∫

dy

y
=

∫

dx x5 −→ ln y =
x6

6
+ C .

There was an integration constant on each side, but it’s fair to just combine
them together when we don’t know their values. Thus,

y(x) = exp

(

C +
x6

6

)

= eC ex
6/6 = y0 e

x6/6

and if we know the value of y at x = 0, that gives us y0.

By the way, there’s no guarantee that you’ll always be able to explicitly solve
the integrated version of an ODE for y(x). BUT, if you’re able to do the

integration and apply the boundary condition, you’ve still got an implicit
solution that can be solved by a computer.

We will look at a few more separable examples, but first there’s one more trick
to put in your back pockets (and it’s also in the “useful formula” handout, so
no need to memorize it) for one additional type of first-order ODE:

dy

dx
+ P (x)y(x) = Q(x)

It’s not separable, but there’s a nice recipe for solving the equation, using

something called an integrating factor:

µ(x) = exp

[
∫ x

P (x′) dx′
]

(doing the integral without C)

and this lets us find the solution

y(x) =
1

µ(x)

[
∫ x

Q(x′)µ(x′) dx′ + C

]

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Example 1: Stellar Nucleosynthesis

We’ll discuss nuclear physics (i.e., fusion & fission) much later in the semester,
but you probably already know what’s going on in, say, the center of our Sun:

The core of a star is hot & dense enough for hydrogen nuclei to undergo fusion
into helium nuclei (“alpha particles”), and the small amount of leftover energy
released as photons provides the stellar luminosity!

For a small bit of volume near the center of the star, we would like to follow
the change in number density (i.e., particles per unit volume) of hydrogen

and helium nuclei over time.

Thus, we want to solve for np(t) and nα(t) .

In reality, the cartoon picture above is wrong. It’s very unlikely for 4 protons

to come together at the same time & place. Fusion actually proceeds in a chain
of pairwise fusion reactions (A+ B → AB) in combination with a few “weak”

reactions (p → n).

We’ll see that it’s okay to assume that the reaction rates (i.e., the number of

reactions that occur per unit time, per unit volume) are proportional to n2
p.

The equations to solve are:

dnp

dt
= −4qn2

p

dnα

dt
= +qn2

p

where q is just some number (appropriate for the star’s current temperature &
density) that puts the rate into the right units.

Why are the right-hand sides different? We can see that the reason is that for
every 4 protons “destroyed,” there’s one helium created.
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To prove that, let’s first take the first equation and ADD it to:
{ 4 times the second equation }:

dnp

dt
+ 4

dnα

dt
= 0

d

dt
(np + 4nα) = 0 =⇒ np + 4nα = constant.

Another way to write this is: (np + 4nα)initial = (np + 4nα)final .

This makes sense. Let’s assume the initial state has 100 protons and no helium

at all. After some time, there’s one reaction. The final state has 96 protons
and 1 helium. X

If we’ve convinced ourselves the equations make sense, we can now solve them.
We’re lucky they’re not truly coupled ODEs, because the np equation can be
solved on its own, without the other one:

dnp

n2
p

= −4q dt

Let’s integrate from t′ = 0 to t, and from np0 to np(t).
(

− 1

np

)

−
(

− 1

np0

)

= −4qt =⇒ np(t) =
np0

1 + 4qnp0t
.

To complete the solution, we need nα(t). We don’t have to integrate again,

because we already know that np + 4nα is a constant. If we assume something
simple (i.e., at t = 0, there’s no helium), then

np0 = np + 4nα =⇒ nα(t) =
np0 − np(t)

4
.

and the two curves look like what we thought they would:
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The proton “fuel” actually never gets completely used up; its number density
just asymptotically approaches zero.

By the way, for the present-day Sun, 4q ≈ 10−43 cm3/s, and np0 ≈ 1026

protons/cm3. Thus, one “time unit” on this plot is about 1017 seconds, or
∼3 billion years. Right order of magnitude for stellar evolution!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 2: Planet Formation

How are planets formed out of the gas/dust accretion disks that surround
young stars?

When gas cools, molecules form. When they cool even more, they can clump
up into larger dust grains. Lab experiments show that dust grains can undergo
electrostatic coagulation (i.e., static cling) and grow to become rocks you could

hold in your arms.

However, once they reach centimeter/meter size, they tend to fragment when

they collide. Much of current planet formation research is about how to grow
past this “meter barrier.”

We’ll assume they’ve solved the problem & become ∼1 km planetesimals.
Our problem: how rapidly do they grow into true planets?

The ODE that we’ll solve is sometimes called Safronov’s equation. We follow

the radius R of a spherical planetesimal, as it plows through a protoplanetary
disk filled with similarly-sized planetesimals and occasionally collides with

them...
dR

dt
= f σ

[

1 +

(

R

Rcrit

)2
]
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where

• f is the “filling factor” of the disk; i.e., what fraction of the volume is

filled with planetesimals. (Typical value: 10−9 ?)

• σ gives the mean “thermal speed” that they’re all moving around with
respect to one another. (Typical value: ∼3 km/s)

• Rcrit is a size above which the self-gravity of our planetesimal is strong

enough to pull others towards it, and thus enhance the rate of collisions.
(Typical value: ∼1000 km)

Note that when R ≪ Rcrit, dR/dt is just a constant; i.e., R grows linearly with

time, as the planetesimal just scoops up a neighbor every once in a while.

What about when R starts to exceed Rcrit? Let’s solve the separable ODE:
∫

dR

1 + (R/Rcrit)2
= fσ

∫

dt

and we integrate from R0 (at t = 0) to R(t), with

Rcrit

[

tan−1

(

R

Rcrit

)

− tan−1

(

R0

Rcrit

)]

= fσ(t− 0)

Thus,

R

Rcrit

= tan

[

tan−1

(

R0

Rcrit

)

+
t

t∞

]

defining t∞ =
Rcrit

fσ
.

This can be simplified with some other identities, but let’s just plot it:
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The above plot used R0/Rcrit = 0.001 for a planetesimal that started at
∼1 km. The solution would’ve looked similar if we just chose R0 = 0.

Note the linear growth at early times (when R is still ≪ Rcrit), but then it

takes off!

There’s a maximum time ≈ t∞ at which the tangent function goes to infinity,

and R increases without bound. This is runaway growth!

(Note: for t > t∞, there may still be mathematical solutions of the ODE, but

they aren’t physically realistic.)

Using the example numbers given above, t∞ ≈ 10, 000 years, which is quick on
the scale of the age of the solar system.

What “real physics” stops the asymptote from going all the way to infinity?
Mostly, it’s the fact that the new planet soon “clears its orbit” by sweeping up

all available stuff. f eventually becomes zero, so dR/dt = 0, and R = constant.
The planet has formed.

The point of these examples was mainly to give examples of solving ODEs, but

hopefully they also convey some “astrophysical insight” about physical
parameters, keeping track of units, and making approximations.
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